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Abstract

Applying climate policy in practice means considering capital stocks: some assets will pro-
duce pollution whenever they are used, and some will not. Therefore long-term abatement plans
should influence current investment. Moreover, newer technologies exhibit learning-by-doing in
the deployment of associated infrastructure. We investigate these ideas from both theoretical
and numerical perspectives. An increasing carbon tax will reduce investments in assets that
pollute, and so reduce emissions in the short term: our “irreversibility effect”. We also show that
the optimal innovation subsidy increases with the deployment rate: our “acceleration effect”.
Considering second-best settings, we show that, although carbon taxes achieve stringent policy
targets more efficiently, subsidies to the “renewables” sector deliver higher welfare when policy
targets are more mild.

Keywords: Infrastructure; Clean and Dirty Energy Inputs; Renewable Energy; Stranded Assets;
Carbon Budget; Climate Change Policies; Green Paradox

JEL codes: O44, Q54, Q58
∗We thank Lassi Ahlvik, Alex Bowen, Maria Carvalho, Simon Dietz, Carolyn Fischer, Roger Fouquet, Reyer

Gerlagh, Kenneth Gillingham, Niko Jaakkola, Per Krusell, Linus Mattauch, Armon Rezai, Daniel Spiro, Rick van
der Ploeg, Till Requate, Andreas Tryphonides, Frank Venmans, and three anonymous referees and participants at:
the Sustainable Development workshop in Rimini (2017); GTAP 2017 (Purdue); the pre-EAERE 2017 workshop on
Stranded Assets and Climate Policy; EAERE 2017 (Athens); OxCarre; LSE; BEEER 2017 (Bergen); INFORMS
2017 (Houston); CESifo annual Energy & Climate Economics conference (2017); Misum (Stockholm), envecon2018;
SURED (2018) and the 2nd MMCN conference (Stanford) for helpful comments and suggestions. When this project
started, Baldwin and Kuralbayeva were employed by the Grantham Research Institute of the London School of
Economics and were supported by the UK’s Economic and Social Research Council (ESRC) and the Grantham
Foundation for the Protection of the Environment, and Cai was employed by the Becker Friedman Institute of the
University of Chicago and a visiting fellow at Hoover Institution at Stanford University. Cai acknowledges support
from the National Science Foundation (SES-0951576 and SES-1463644) under the auspices of the RDCEP project at
the University of Chicago. Kuralbayeva also acknowledges support from Statoil via the Statoil Chair in Economics
at NHH. The authors have no other relevant or material financial interests that relate to the research described in
this paper.
†Department of Economics and Hertford College, Oxford University, UK; elizabeth.baldwin@economics.ox.ac.uk
‡Department of Agricultural, Environmental and Development Economics, The Ohio State University, USA;

cai.619@osu.edu
§Department of Political Economy, King’s College London, UK; karlygash.kuralbayeva@kcl.ac.uk

1



1 Introduction

How soon should we ensure that all new investments are “green”? In particular, what is the op-
timal time to stop investment in fossil-fuel-based power plants? The world continues to make big
investments into their construction, particularly coal-based plants: estimates suggest that almost
1 trillion US dollars of such investments are planned (Shearer et al. 2016). Given the long life-
times of fossil fuel based power plants, the emissions embodied in this infrastructure potentially
undermine stringent long-term climate objectives, such as the 2◦C target (see Pfeiffer et al. 2016).
As such, a fast coal phase-out strategy is considered as one of the necessary conditions to achieve
a transformation in line with the Paris Agreement. Some countries such as the UK, Finland and
France have significantly reduced their power production from coal in recent years and announced
the phasing out of coal completely in the coming 10-15 years. On the other hand, production of
electricity from renewable sources has become more competitive, expanding dramatically, primarily
due to the decline in costs driven by learning-by-doing in this sector. These considerations prompt
another key question: how much should we invest in the clean energy sector, and when?

Economists advocate a withdrawal from polluting sectors driven by carbon pricing. And in-
vestments in the clean energy sector are driven by subsidies. So a natural third question is to ask:
which of these policy instruments (carbon tax or subsidy) is more efficient in terms of maximizing
social welfare in a second-best setting, where only one instrument is available?

In this paper, we study these questions both theoretically and numerically. Our analysis is
in two complementary parts. First, we explore the properties of irreversible investment decisions
(Arrow 1968, Arrow and Kurz 1970, Greenwood et al. 1997) in a simplified and very general model.
Since irreversibility is an important feature of almost any investment decision, the model presents
messages that are of a general nature and provide intuition. The model characterizes optimal
irreversible investment decisions when it is known that returns on this capital are due to fall. This
has important implications for investment decisions even without uncertainty. And similarly, we
explore investments, returns and optimal subsidies for investments into technologies in a sector that
undergoes learning-by-doing (Wright 1936, Arrow 1962).

We then quantify the importance of irreversibility and learning-by-doing in a dynamic general
equilibrium climate-economy model. This is based on DICE-2013 (Nordhaus 2014a) and its annu-
alized version (Cai et al., 2016) but deviates in two important ways. Firstly, the energy sector is
modeled explicitly, with irreversibility in investments in capital stocks in both a “dirty” sector and
a “clean” sector, and with the latter sector characterized by learning-by-doing. And secondly, as
well as using the damage function of Nordhaus (2014a), we also consider scenarios in which global
temperature changes do not exceed 2◦C. This stringent target makes both the irreversibility and
the learning-by-doing more important, and it is more in line with current international aspirations.
Given the two externalities present in our model (global warming and learning-by-doing), we con-
sider cases in which both a carbon tax and subsidy instruments (the first-best setting) or only one
of the two instruments (the second-best) are available.

The four main findings of the paper are as follows. First, we establish a theoretical result for
the relationship between climate policies and investment in dirty capital stocks, which we call the
“irreversibility effect”: if dirty capital cannot be converted to other capital, then it is optimal to stop
investing in dirty capital earlier (compared to a case in which investment is reversible). Irreversibility
in investment implies an earlier shift to investment in the clean sector, to avoid a future stranding
of assets in the dirty energy sector. This shift therefore reduces emissions in the short term. We
thus demonstrate that irreversibility effects on the demand side enhance the effects of a carbon tax
in the short term. This is in contrast with the standard Green Paradox effect (see e.g., Sinn 2008,
2015, Jensen et al. 2015) which focuses on the suppliers of a fossil fuel resource and shows that the
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knowledge of an increasing carbon tax will increase extraction of fossil fuels and will thus counteract
the effects of the carbon tax in the short-term. Moreover, at the time at which investment in dirty
fossil fuel infrastructure stops, returns on its existing assets go above those of the general economy.
From the perspective of an investor, this result makes perfect sense. In the long-term, returns on
this investment will fall, and thus current investments are only attractive when short-term excess
returns (relative to those of the general economy) are sufficient to compensate for future losses.1 It
is natural to ask for how long this “short term” irreversibility effect is relevant. We obtain a lower
bound for the time period by which disinvestment must be advanced. If other things are equal, this
lower bound is higher for longer-lived assets.

Second, we provide a simple and elegant expression for the optimal subsidy on technologies
whose price evolves as a result of “learning-by-doing” occurring in a sector. This subsidy increases
with depreciation and the learning rate, and also with the growth of capital in this sector. We
call this the “acceleration effect” for technology policy. Thus suppose, for example, that a carbon
tax on substitute sectors makes the clean technology more competitive and so enhances growth in
this sector. Due to the acceleration effect, the subsidy for this sector should also increase (despite
the fact that the market is already more favorable). So the importance of learning-by-doing is
accentuated by the early withdrawal from the dirty energy sector.

Third, our quantitative results support our theoretical findings and illustrate that the net (of
depreciation) rate of returns on dirty capital infrastructure with irreversible investments follows an
unusual trajectory: while initially matching the returns in the general economy, it rises above the
returns in the general economy when investment in dirty capital stops, and remains higher for some
period of time. Within this period and for some time thereafter, investment in dirty capital will be
equal to zero, although the dirty capital is not underutilized. However, net returns on dirty capital
will fall eventually, reaching zero once this capital is underutilized. Quantitative results illustrate
that the timing of these effects depends on the climate policy target: the irreversibility effect is
present only if policy objectives are stringent enough.

We observe the acceleration effect on the optimal subsidy when we compare mild to more
stringent targets. This is because with more stringent targets, the renewable sector grows faster,
and consistent with our theoretical result, the subsidies must be larger. We also find that with
higher values of the learning rate, there is faster growth in the renewable sector in the current
period compared with later decades (for instance, 2050 or 2100), suggesting that there is less need
to stimulate renewable sector growth in later periods once the clean technology matures.

Finally, we quantitatively explore which instrument – carbon tax or subsidy – under the second-
best setting yields a lower welfare loss compared with the first-best situation. We show that under
a less ambitious climate policy, the economy is better off with the subsidy, while carbon pricing
induces a lower welfare loss compared with the subsidy if climate policies are more ambitious.

In terms of the implications of our results, this paper contributes to the debate on charac-
teristics of optimal policy to combat climate change. Some advocate a “gradual slope” in policy
implementation because economic growth implies that the current generation is poor relative to
future generations, and so should not bear large costs of emission reductions. Moreover, doing
so reduces pressure for premature retirement of the existing dirty capital stock, and it provides
valuable time to develop low-cost, low-carbon-emitting technologies.2 Others counter this line of

1This extra premium on irreversible investment even without uncertainty is also called the commitment premium,
see for example Bernstein and Mamuneas (2007).

2W. Nordhaus was one of those in the past who recommended a “gradual slope”, but he recently argued that a
target with a limit of 2◦C “appears to be unfeasible with reasonably accessible technologies” (Nordhaus 2018). Wigley
et al. (1996), among others, argue that the cost-effective emissions pathway is one that departs only gradually from
the emissions baseline.
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reasoning by arguing that an effective way to reduce abatement costs is to accelerate learning-by-
doing.3 We find that early investment in the renewable sector is crucial, not only to accelerate
the decline in the costs of clean energy, but also to prevent later stranding of assets that use fossil
fuels. Our quantitative results within the second-best setting (with only one policy instrument
available) emphasize the importance of adopting carbon pricing, an instrument that can facilitate a
rapid decarbonization of the global power sector under an ambitious climate policy target like that
set under the Paris Agreement. However, considering the past 10-20 years, relatively unambitious
policy has manifested itself in a large part through subsidies on renewables; if that less ambitious
level of emission reductions had been optimal, that single choice of instrument may well have been
an excellent second best. Our quantitative results under a second-best setting where carbon pricing
action is restricted by political economy issues illustrate that the subsidy needs to be higher (if the
carbon tax is lower than the optimal first-best level) to compensate. In later periods once renewable
technologies reach maturity, there is no need to maintain the same level of subsidies. Thus, the
subsidies help to overcome political constraints in the short-run to reach the climate target, and
help to develop the renewable sector to play its role in the economy in the longer term.

Finally, our paper speaks to the debate on stranded assets and climate policy.4 The literature so
far has been dominated by studies that estimate the amount of existing fossil fuel reserves to remain
in the ground to limit climate change to less than two degrees of warming. For instance, according
to McGlade and Ekins (2015), an estimated one-third of oil reserves, half of gas reserves and more
than 80% of known coal reserves are referred to as “stranded”. As we show, the implications for
investment are different when one considers the stranding of assets that use the fuel.

The rest of the paper is organized as follows. In the next subsection we discuss related literature.
In Section 2 we present a simple analytical model in which we characterize optimal irreversible
investment decisions when the anticipated returns on those investments will fall in the future. In
Section 3 we consider a simple model of investment into production processes that undergo learning-
by-doing. Section 4 describes how we set up the full dynamic general equilibrium climate-economy
model to quantify the theoretical results. Section 5 sets out the results from the simulations of the
climate-economy model. Section 6 provides a discussion and the final section concludes. Details on
the calibration, and proofs of technical results, are provided in the Appendices.

1.1 Related Literature

Our paper is related and contributes to several strands of research. First, irreversibility of investment
features prominently in the modern theory of firm-level investment under uncertainty (e.g., Abel
1983, Pindyck 1991, Dixit 1992), and in the “putty-clay” framework of Atkeson and Kehoe (1999).
Our work builds on the earlier studies of investment irreversibility in a deterministic setting. The
closest precedent to our work is Arrow (1968), who showed that optimal irreversible investment is
characterized by alternating periods of positive gross investment and zero gross investment. Our
findings are in line with his, but relative to his work, our study applies the irreversibility effect to
the case of a polluting industry and demonstrate how irreversibility can affect the path of emissions.

Second, the existing literature recognizes that induced technological change affects optimal cli-
mate policy and optimal policy mix between carbon taxes and innovation subsidies. Studies have
shown that in the presence of knowledge accumulation, abatement effort should generally be larger

3Still, some authors find that learning-by-doing has an ambiguous impact on the timing of emissions abatement
(Tol 1999, Goulder and Mathai 2000).

4Caldecott (2017) argues that the term “stranded assets” has been used to describe various situations. We follow
Caldecott et al. (2013) and define stranded assets as assets that have suffered from premature write-down before the
end of their technological life.
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than what the carbon price alone would prescribe (e.g., Wigley et al. 1996, Goulder and Mathai
2000, Kverndokk and Rosendahl 2007). Kverndokk and Rosendahl (2007), more specifically, also
find that optimal renewable subsidies are increasing in the rate of future renewable deployment.
However their findings are numerical results. In contrast, our analysis provides an explicit formula
for renewable subsidies derived from a tractable model, thus giving a concrete rationale for how
large the renewable sector subsidies should be, and how they evolve over time.

Third, there is an extensive literature that has explored the robustness of the Green Paradox
effect by considering various extensions of its typical underlying resource model (e.g., Gerlagh 2011,
Michielsen 2014, Smulders et al. 2012, van der Ploeg 2013, van der Ploeg and Withagen 2014). The
irreversibility effect discussed in this paper complements other mechanisms against the Green Para-
dox discussed in this literature, but it also adds a different perspective, as it focuses on the demand
side of a fossil fuel resource. The only other work exploring this perspective is contemporaneous
work by Bauer et al. (2018), who provide a numerical comparison of the irreversibility effect and
Green Paradox; we put the phenomenon on a clear theoretical footing.

Fourth, our paper is related and contributes to a large quantitative literature that investigates
relative merits of carbon taxes and renewable subsidies to address climate change (e.g., Fischer
and Newell 2008, Fischer et al. 2017, Gerlagh and van der Zwaan 2006) However, these studies
generally abstract from consideration of different climate policy targets under second-best settings
with irreversible investment decisions, as we do in this paper. On the other hand, a rich and
growing literature has developed integrated assessment models to study a number of different climate
change issues. Papers assessing future emissions from the energy sector include Pfeiffer et al. (2016)
and Davis et al. (2010). However, these do not use the dynamically optimizing frameworks of
the economics literature. Other climate-economy models generally ignore the interplay between
irreversible investment decisions, inertia in energy systems, and climate policies, on which this
paper focuses.

An exception is the concurrent work by Rozenberg et al. (2018), who examine the trade-off
between efficiency and political feasibility of climate change mitigation policies, in terms of avoiding
stranded assets. The “first best” version of their model is similar to our model of irreversible
investments (but they do not provide such a full calibration, or explore learning-by-doing). However,
they do not identify that short-term economic returns on dirty capital can go above those in the
rest of the economy, after investment has ceased. As we show, this must be the case if positive
investment is to take place in the full knowledge that investment will eventually cease: it is a key
part of what we call our “irreversibility effect”. Thus the dirty capital stock which is accrued in full
knowledge that it will be eventually underutilized, is a key feature of our paper, that theirs does not
capture. They also show that investment must stop (at least temporarily) at the moment at which
policy is implemented. This follows from their use of continuous time: with a discrete time step
this could simply correspond to reduced investment within a single period. Our model, calibrated
against real-world values, shows positive investment in the short term under even very stringent
policy scenarios.

Finally, our paper belongs to the literature on path dependence and climate change (Fouquet
2016; Aghion et al. 2014, 2016; Grubb et al. 1995; Rozenberg et al. 2018; Vogt-Schilb et al. 2018).
We contribute to this literature by analyzing the implications of path dependence embodied in
carbon-intensive infrastructure for the design of optimal climate change policies under first- and
second-best settings.
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2 A Simple Model of Irreversible Investments

As described in the introduction, our key motivation is studying capital stock effects in the context
of climate change. However, the analytical results we prove in this context hold in much more
general settings. Therefore, in both this section and the next, we present models that focus only on
the “moving parts” which are relevant to these results. The model analyzed here, and the model of
learning-by-doing analyzed in Section 3, will both be embedded in our full structure in Section 4.

For this section, we consider the implications of irreversibility in investments in capital stocks
whose economic productivity will decline (cf. Arrow 1968, Arrow and Kurz 1970).5 Our key example
is investment in fossil-fuel-using power stations, but as discussed earlier, many other illustrations
exist, such as the structure of transportation systems and the design of cities.

2.1 The Household’s problem

Consider a representative household, which holds kt of a certain “irreversible investment” asset. The
household can make an additional investment of it ≥ 0 in each period t. We will assume that the
period-t return rt on the asset eventually drops below the returns in the general economy and will
ask: when does investment end? That is, when is it = 0?

There are other opportunities for investment and other sources of income, written net as ot.
The household’s per-period consumption is ct. Their budget constraint is it + ct = rtkt + ot where
investment it = kt+1−(1−δ)kt, with δ being depreciation of the irreversible investment asset. Write
u for their utility function and β for their utility discount factor. We will want to compare returns on
the irreversible investment asset with those on the rest of the economy. To do this without specifying
any more details, just write the standard ratio from the Euler equation as et+1 := u′(ct)

βu′(ct+1) − 1,
which represents the consumption discount rate. Make the minor assumption that et is bounded
and bounded away from −δ. That is, assume there exist ε > 0 and R � 0 with −δ + ε < et < R
for all t.

We first see that the Euler equation does indeed hold while investment is positive. See Appendix
A for proofs of all results in this section.6

Lemma 2.1. For any times s0 and s1, investment it > 0 holds for all t ∈ {s0, . . . , s1} only if
rt − δ = et for t ∈ {s0 + 1, . . . , s1}.

But now let us consider a more interesting case. Suppose the net return from the irreversible
investment asset drops below et at some time s1, and this is anticipated. Changing economic
conditions mean that this asset is no longer as productive as it was. Then we stop investing earlier

5Irreversibility is a critical element of the model because it makes some investments obsolete due to changes in
the rates of return caused by stringent climate policy targets. This situation when the equipment, once installed,
is no longer viable in economic terms can be modeled in a “putty-clay” framework. This framework assumes that
dirty-electricity-producing firms can turn variable raw capital that is malleable ex ante (“putty”), into capital goods
with certain technological characteristics, including energy efficiency. However, once the choices have been made,
and the coal-fired plant is in operation, there is a fixed factor ratio, or frozen structure (“clay”). This property of
capital structures implies that the plant will either be fully utilized or scrapped at some point in time when it loses its
economic value. The relevant literature that uses putty-clay production functions are Atkeson and Kehoe (1999) and
Casey (2017). The putty-clay framework should allow simultaneous use of old and new vintages and is particularly
useful in explaining phenomena like entry and exit of firms, especially through the fact that equipment has become
obsolete in an economic sense, or to explain drives of changes in final-use energy intensity in the US as done by Casey
(2017).

6Lemmas 2.1-2.3 follow straightforwardly from a technical lemma (Lemma A.1 in Appendix A) that presents the
shadow price on the irreversibility constraint, it ≥ 0 as the net present value of investment in this asset, relative to
the opportunity cost.

6



than time s1, and reap excess returns on the irreversible investment for some of the intervening
period.

Lemma 2.2. Suppose that initial investment i0 > 0 and that it is correctly anticipated that rt−δ < et
for t ∈ {s1, . . . , s2}. Then there exists a time s0 ≤ s1 − 1 such that rs0 − δ > es0 and such that
investment it = 0 for t ∈ {s0, . . . , s2 − 1}.

Lemma 2.2 tells us that net returns rt− δ from this asset follow an unusual trajectory: initially
matching the consumption discount rate path et, we see that rt−δ rises above et at some point before
it falls beneath. Investment is zero while returns follow this pattern. (This pattern is illustrated in
Section 5, Figure 2).

From the perspective of an investor, these short-term excess returns make perfect sense. If
the investor knows that, in the long-term, returns on this infrastructure will fall, then it is not an
attractive investment. However, short-term additional gains will compensate for long-term losses.
In fact, if we write ∆t,s =

∏s
s′=1

1
1+et+s′

for the compound consumption discount factor, then it
must hold that:

Lemma 2.3. Suppose that initial investment i0 > 0. Then for any times s1 and s2 (e.g., those as
in Lemma 2.2), it holds that

s1−1∑
s=1

(1− δ)s−1∆0,s((rs − δ)− es) ≥
s2∑
s=s1

(1− δ)s−1∆0,s(es − (rs − δ)) (1)

Moreover, these short-term gains will indeed be realized if all other investors are similarly ending
investment early.7

How early does investment stop? Lemma 2.2 could allow s0 = s1 − 1. But Lemma 2.3 shows
that this is unlikely: we need short-term gains to compensate the long-term losses. It is hard to
find a closed form expression for the time gap in general. But if we put bounds on rt− δ, and if we
assume that et is a constant e so that ∆0,s is just 1

(1+e)s , we obtain a bound for the advancement
of the end to investment:

Corollary 2.4. Suppose et = e is constant. If initial investment i0 > 0, if net returns rt−δ ≤ e−d2

for all times t ≥ s1, and net returns have an overall bound, that is, there exists d1 > 0 such that
(rt − δ) ≤ e + d1 for all t, then there exists a time s0 ≤ s1 − 1 such that investment it = 0 for all
t ≥ s0 and such that

s1 − s0 ≥
log(d1 + d2)− log(d1)

log(1 + e)− log(1− δ)
. (2)

Note that (2) only provides a lower bound on the advancement of the end of investment.
Nonetheless, it provides useful verification of natural intuitions. The right hand side of (2) in-
creases with d2 and decreases with d1. That is, if future returns from the irreversible asset will
be extremely low, or if short-term gains are very limited, then this advances the date by which
investment must have stopped. Moreover, the right hand side of (2) is decreasing with δ. So, ceteris
paribus, our time by which investment must end is sooner for longer-lived assets.

7Our results can be illustrated with a historical example, for which we are grateful to Roger Fouquet. In the first
half of the 19th century, the introduction of steam engines brought cheaper and more comfortable medium and longer
distance travel than had previously been provided by stagecoaches (pulled by horses). Coach companies responded
to this heightened competition from railways by ceasing investment into equipment and horses, driving their prices
even higher, which inevitably accelerated the transition to railways (Fouquet, 2012).
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Thus, for example, suppose the time step is one year. If the Euler rate e is 0.1, if depreciation is
fast at 0.1, and if short-term gains can exceed the Euler rate by the same amount as the deficit in
long-term losses, then s1− s0 is bounded below by only 4. But if e = 0.04, if depreciation is a much
slower at 0.01 (considering perhaps the design of cities), and if short-term gains can only achieve
one third of long-term losses relative to e, then investment must end at least 29 years before these
low returns commence.

Now we consider what this means for the quantity of total holdings of this irreversible asset. If
there are L0 identical households in the economy, each of size Lt

L0
, then the investment behavior of

Lemma 2.2 simply scales up. We use capital letters to denote total capitalKt and total investment It
for the irreversible asset. We assume, as is implied by standard models, that in each period, returns
rt are monotone strictly decreasing in capital stock Kt. So the pattern of investment implied by
Lemma 2.2 implies a short-term decrease in the dirty energy capital stock, relative to a world in
which investments are reversible (and so underutilization is never an issue).

To explore this, consider an otherwise identical model in which we relax the constraint it ≥ 0
– allowing holdings of this capital stock to be converted back into cash for consumption or other
purposes. We use tilde to refer to variables in this modified model (K̃t, Ĩt, and so on). We suppose
that et is unchanged by relaxing the constraint it ≥ 0, because the sector concerning the irreversible
asset is very small in relation to the rest of the economy.

Corollary 2.5. Suppose that total initial investment I0 > 0 and there exists a time t1 ≥ 1 such
that Ĩt1 < 0. Then there exists a time t0 < t1 such that It0 < Ĩt0 and such that Kt < K̃t for
t ∈ {t0 + 1, . . . , t1}.

That is, in the short term, less is invested in the irreversible capital stock, relative to a world in
which investments are reversible. By making the same assumptions as in Corollary 2.4 about net
returns in the irreversible world, we can provide the same bound on the length of time for which
investments are lower than they would be if we could assume reversibility.

2.2 The Irreversibility Effect in Climate Change Economics

In this paper we apply the observations of Section 2.1 to a model of climate change economics.
We are particularly concerned with capital investments in installations, such as coal fired power
stations, which will burn fossil fuels. The quantity of fuel demanded, and burnt, is associated with
the quantity of appropriate capital infrastructure available and in use. If, in the extreme case, this
relationship is Leontief, then Corollary 2.5 implies:

Corollary 2.6 (The Irreversibility Effect). Suppose emissions are directly proportional to the
utilized fraction ζt of installed infrastructure that uses fossil fuel. Assume that investment in this
infrastructure is non-zero in the first period, but there exists a time t1 ≥ 1 such that this infrastruc-
ture would be globally divested if it could be. Then, for some period leading up to t1, emissions are
below the level they would reach if divestment were possible.

That is, capital stock effects within those who demand fossil fuels enhance the effect of a carbon
tax in the short term. Again, we can turn to Corollary 2.4 to give a bound on the length of this
“short term”.

This result contrasts with the Green Paradox (Sinn, 2008), relating to capital stocks in the supply
of fossil fuels. Suppose a new carbon tax regime has just been announced, in which future carbon
taxes are higher than had previously been expected. This reduces the future rents from stocks of
fossil fuels. So fossil fuel suppliers update their optimal extraction pathways, reducing their short
term per-unit rents to increase the volume sold. Short-term emissions are thus higher than they
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would have been estimated by a more naive model, which ignored these supply-side effects (and a
Green Paradox occurs when this effect is large enough to increase short-term emissions). However,
as developed above, investment irreversibilities mean that short-term emissions are lower than they
would have been estimated by a more naive model, which ignored these demand-side effects. Thus
these two effects push in countervailing directions, both in a richer model and in the real world.

We emphasize the contrast theoretically in this paper. Our numerical methods (Sections 4–5)
are not well-tuned to assess which of these effects is more important, because our stylized model
only distinguishes one fossil fuel, which is calibrated to coal (see Section 4.5). However, concurrent
complementary research (Bauer et al. 2018) has examined this question numerically. There, models
with much more finely specified energy sectors show that the Green Paradox is much more important
to oil than coal (although a small Green Paradox can exist for coal) but that the irreversibility effect,
which is more important to coal, is also generally much greater. Their only scenario in which the
Green Paradox dominates the irreversibility effect has a carbon tax which is very low, with a 40
year implementation lag.

Our main interest, as in Corollary 2.6, is in the effect of irreversibilities on the timing of emissions
(Figure 3). Corollary 2.6 does not address how Pigouvian taxes change once irreversibilities are
taken into account. It is not straightforward to give a general answer to this question. The proof
of Corollary 2.5 showed that incorporating irreversibility also means that there will be greater
holdings of that asset at some date after the time t1 at which infrastructure would be divested
if this were possible. It does not necessarily follow that emissions will be greater after this date,
because we allow underutilization of capital stocks. (For the same reason, the long-term implications
of the irreversibility effect are ambiguous.) But if emissions are indeed higher after date t1 in the
irreversible scenario, and if there is a reasonably low discount rate, then the net effect on the
Pigouvian tax is reduced. We have found in the calibration of Section 4 that the difference between
an optimal carbon tax with and without irreversibility is small.

3 A Simple Model of Investing with Learning-By-Doing

Learning-by-doing is often cited as a rationale for subsidizing renewable electricity. The theory
of learning-by-doing is motivated by simple observation: production performance (either in the
form of productivity or cost reduction of technology) tends to improve with the accumulation of
experience. We are particularly interested in the form that was specified by both Wright (1936)
and Arrow (1962): each doubling of cumulative deployment reduces costs (and hence prices) by the
same factor, known as the “learning rate”.8 Empirically, the existing literature has found substantial
evidence that the price of renewable energy evolves in this way, although a causal relationship has
not been finally established.9

To model this, we consider stocks of a ‘learning-by-doing (LBD) asset’, Ht (writing ht for
8Wright (1936) was the first one to describe the concept of learning, after observing a uniform decrease in the

number of direct labor hours required to produce an airframe for each doubling of the cumulative production of the
plant under consideration.

9Lindman and Soderholm (2012) use aggregate data and show that learning externalities are present in wind
turbines and solar panel costs. Such studies based on aggregate data, however, are unable to disentangle the effect
of exogenous technological change from the effect of leaning-by-doing thus masking the diverse drivers of technology
costs (see also Nordhaus 2014b). Nemet (2006) for instance finds that after accounting for measures of technological
change and the cost of inputs, learning has only weak explanatory power for solar panel costs. Much more recently,
Lafond et al. (2018) use hindcasting techniques to assess this model, and find that it provides a very good fit. Bollinger
and Gillingham (2014) provide evidence for cost reductions due to learning-by-doing across installation contractors
of solar photovoltaics in California from 2002 to 2012. See also Rubin et al. (2015) on the use of learning rates in
this context.
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household-level holdings as before). The notation reminds readers that the LBD asset embodies
human capital in the form of knowledge, as well as the infrastructure itself. The form of this
knowledge is embodied in the price pHt of installing this infrastructure, such that iHt = pHt (ht+1 −
(1−δ)ht). This price depends on the total installed capacityHt which aggregates individual holdings
ht. Thus pHt = G(Ht). Of particular interest is Wright’s Law: there exists a constant λ > 0 with

pHt = G(Ht) = pH0

(
Ht

H0

)−λ
. (3)

However, we also derive the optimal subsidy for the general case, minimizing additional assumptions.
We will stipulate again that investment in this sector is irreversible.

Learning-by-doing gives rise to an externality. So we first explore the optimal program of
investment found by a social planner. We contrast this with the behavior of households who act as
price-takers, to better identify and understand the optimal subsidy.

3.1 The Social Planner’s Case

The social planner maximizes total welfare
∑∞

t=0 β
tLtu

(
Ct
Lt

)
, where Lt is the population size and

Ct is total consumption. This is subject to the investment equations IHt = pHt (Ht+1 − (1 − δ)Ht);
the investment bounds IHt ≥ 0; the price evolution pHt = G(Ht); and the budget constraints
IHt + Ct = ft(Ht, Ot), where we have written Ot = Ltot for the economy-level aggregate of “other”
incomes, so that we can write ft(Ht, Ot) for the production function. The planner will treat Ot as
exogenous, which is a harmless assumption if all externalities in the remainder of the economy have
been internalized.

Define the direct return on investments in the LBD asset to be rst+1 := 1
pHt+1

∂
∂Ht+1

ft+1(Ht+1, Ot+1):

that is, we account for the price of investments.10 Because this investment price changes over time,
the direct return does not reflect the full value to the social planner of investments in our LBD
asset. So we use the discrete time version of the definition of Jorgenson (1967) to define a shadow
return on these investments:

Rt+1 :=
µHt − β(1− δ)µHt+1

βu′(Ct+1/Lt+1)

Here, µHt is the shadow price on the investment equation IHt = pHt (Ht+1 − (1− δ)Ht), and so gives
the total shadow value of marginal investments in the LBD asset. To find the return realized in
period t+ 1, we subtract the discounted depreciated shadow value going further forward. As usual,
everything is measured relative to the marginal value today of consumption tomorrow.

To show how natural the shadow return is, and relate it to the direct return, we write again
et+1 := u′(Ct/Lt)

βu′(Ct+1/Lt+1) − 1 and show:11

Proposition 3.1. Suppose that investment into this sector will be non-zero next period, i.e. IHt+1 > 0.
Then Rt+1 − δ = et+1, and

pHt
pHt+1

Rt+1 = rst+1 −
pHt − pHt+1

pHt+1

(1− δ) − (Ht+2 − (1− δ)Ht+1)
G′(Ht+1)

pHt+1

(4)

shadow return direct return price effect learning effect
10We write rst to distinguish from the notation for the market rate of return rt, which we will use in Section 3.2.
11See Appendix A for proofs of all results in this section.
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Thus the Euler equation holds for shadow returns (as distinct from direct returns, for which
it does not hold). The factor pHt /pHt+1 on Rt+1 in (4) is needed because, as defined, Rt+1 values
returns relative to the price pHt of investment at the moment at which the investment is made, while
direct returns rst+1 are valued relative to the price pHt+1 at the time at which we receive the return.

Relative to next-period prices, then, the shadow return is composed of three terms. One is the
“direct return”. Next, we observe a “price effect”, from the dependence of prices on time. In period
t + 1, an additional unit of renewable capital costs pHt+1, but it would have cost pHt in period t.
If prices are decreasing over time then this gives an incentive to delay investment, and so reduces
the shadow return on investment in period t. This effect arises because we assume that prices are
constant within each period, and so the benefits of learning are not enjoyed until the following
period. Thus, the importance of this consideration will depend on the size of the time-periods we
use. In our calibration (Section 4) the time step is one year, which may be reasonable: technological
innovations cannot be shared instantaneously, but realized prices do seem to differ from year to year.

The final term, which we call the “learning effect”, arises due to our assumption of learning-by-
doing. It incorporates the marginal change in price in the LBD asset due to our holdings of this
asset, valued against their price at time t + 1. This marginal change in price is multiplied by how
many units of the asset we will invest in, in period t+ 1. One must not be confused by the negative
sign: typically G′(H) < 0 (prices decrease with capacity), and Ht+1 > (1 − δ)Ht (investment is
positive), so that the learning effect is typically positive.

The net effect of the price and learning effects may be positive or negative, and so the total
return on renewables may be greater than, or less than, their direct net return (see Corollary A.2
for examples of each case and a discussion). However, the price effect will be taken into account by
small rationally optimizing firms, whereas the learning effect will not, because in our specification,
learning-by-doing is a pure externality. So, as we will see next, the optimal subsidy in a decentralized
model is equal to the learning effect. It follows that investing in the LBD asset becomes worthwhile
from a social perspective before it is individually rational: if investment will take place in the near
future, it is socially optimal to start earlier than an individual would choose to.

3.2 Learning-By-Doing and the Acceleration Effect

We assume that households act as price-takers on the LBD asset. Due to the positive externality,
there will be under-investment without intervention. So we introduce a subsidy, τt; it is convenient to
express this as a subsidy on the rate of return. Now we may write the household’s budget constraint
as iHt + ct = (rt + τt)p

H
t ht + ot, where ot represents other sources of income (as in Section 2.1).

These investments are characterized by iHt = pHt (ht+1− (1− δ)ht) and iHt ≥ 0. The subsidy is paid
for out of lump sum taxation; as the households are price-takers, this taxation may be incorporated
into ot. Meanwhile, a final goods firm maximizes its profits ft(Ht, Ot)− rtpHt Ht− potOt, where pot is
the price they must pay for access to other assets.

Again there are L0 households in the economy, each of size Lt
L0

, so that the consumption of a
representative individual is L0ct

Lt
.

Proposition 3.2. Suppose that any externalities in ot have been internalized. The subsidy τt which
maximizes consumer welfare

∑∞
t=0 β

tLtu
(
L0
Lt
ct

)
is equal to the learning effect:

τt = − (Ht+1 − (1− δ)Ht)
G′(Ht)

pHt
.

This expression is even simpler if G(Ht) follows Wright’s Law (3). Write gHt for growth Ht+1−Ht
Ht

.
Then:
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Corollary 3.3 (The Acceleration Effect). If G(Ht) = pH0

(
Ht
H0

)−λ
, then

τt = λ
(
gHt + δ

)
.

In particular, the subsidy τt increases with gHt .

Thus, the subsidy to the LBD asset is a straightforward function of its growth rate. Contrary to
models which prescribe a short-term subsidy to this sector, the specification we use implies that this
subsidy is positive as long as there is any investment in this sector, even only to replace depreciating
stock. Moreover, if a change in information or policy makes the LBD asset more attractive in the
economy, and so it starts to accumulate faster irrespective of the subsidy, we also increase the
subsidy to this asset, spurring growth that is faster still. We call this the acceleration effect for
technology policy.

For an illustration, see Figure 4a in Section 4.9, where we consider the optimal subsidy under
both ‘mild’ and ‘stringent’ climate policy targets (as will be precisely defined later). There we see
that, in the short term, more ambitious targets to decarbonize the economy, which will incentivize
faster deployment of renewable technologies, also increase the optimal subsidy to investments in
these technologies. In the longer term, stringent climate policy targets mean that we have already
developed a greater capacity of this capital stock, and so its growth rate drops to a lower level than
under mild policy targets; the subsidy is therefore also lower.

4 The Full Model

This section outlines the full dynamic general equilibrium climate-economy model which is used
for quantitative analysis. The derivations of the equations that define the solution of the model
are given in Appendix D. To summarize, the model presents a climate-economy structure, where,
unlike other climate-economy models (see, for example Nordhaus 2008; Golosov et al. 2014; Rezai
and van der Ploeg 2017; Acemoglu et al. 2016; Barrage 2018; Cai and Lontzek 2018; Cai et al.
2018) we differentiate between three capital stocks:12 general capital, “clean” and “dirty”, with
irreversibility in investments characterizing the latter two capital stocks, as in Section 2 above.
We allow underutilization of dirty capital stocks, once they become uncompetitive. In addition we
assume that the “clean” sector is characterized by “learning-by-doing”: costs of new technologies
decline as a function of cumulative installed capacity in the sector, as in Section 3. The climate
module uses the representation of the carbon cycle, temperature system, and climate-economy
feedbacks based on the DICE framework (Nordhaus, 2014a), but calibrated to an annual time step
(Cai et al., 2016).

There are five production sectors and thus there are five types of firms: final-goods producing
firms, aggregate-electricity producing firms, dirty-electricity producing firms, fossil-fuel extracting
firms and firms producing electricity from renewable sources. All firms operate under perfect com-
petition.

Turning to the demand side of the economy, we are interested in the behavior of a representative
household who does not internalize the learning-by-doing externality and treats all prices as given.
Finally, there are three sources of carbon dioxide emissions: general output production, electricity
production from dirty energy inputs, and land use. Climate change affects productivity in the final
goods producing sector.

12In a similar way, but within a different context, Greenwood et al. (1997) developed the importance of investment
in differentiated capital stocks for growth and technological change.
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4.1 The households’ problem

We are interested in the behavior of a representative household. There are L0 households (defined
as the population size of the economy at the initial period, which in our calibrated model is 2012),
and the size of the family at time t is Lt

L0
, where Lt is the population size at period t.13

We consider all variables on a per-household basis, denoted using lowercase letters, while capital
letters denote aggregate variables (over all households). For instance, we will write kgt =

Kg
t

L0
,

where Kg
t is the aggregate general capital stock and Ht is the aggregate stock of renewable energy

knowledge and capital. The household seeks to maximize the sum of the welfare of individual family
members, that is:

∞∑
t=0

βt
Lt
L0
u

(
Ct
Lt

)
=

∞∑
t=0

βt
Lt
L0
u

(
L0

Lt
ct

)
where Ct is aggregate consumption and ct := Ct

L0
is per-household consumption. The household owns

a representative share of all three capital assets and the five sorts of companies. We denote rDt , rHt
and rgt as the rate of return on capital assets in fossil-fuel-using (dirty) capital, renewable (clean)
capital, and general capital (used in the production of final-goods producing firms), respectively.
Further, we write wt for the wage, Πg

t for the total profit from the sale of the final goods, ΠD
t for

the total profit from the sale of fossil-fuel-based electricity, ΠH
t for the total profit from the sale of

“clean” electricity, ΠDE
t for the total profit from the sale of fossil fuels, and ΠE

t for the total profit
from the sale of aggregate electricity, so that the aggregate profit is Πt = Πg

t +ΠD
t +ΠH

t +ΠDE
t +ΠE

t ,
and the per-household profit is πt := Πt

L0
.

In each period, the household faces the following budget constraint:

igt + iDt + iHt + ct =
Lt
L0
wt + πt + rgt k

g
t + rDt p

D
t k

D
t + rHt p

H
t ht

+
1

L0

(
τDt (DE

t +Dg
t )− τHt pHt Ht

)
where igt is investment in general capital, iDt is investment into dirty capital used in the production
of dirty electricity, iHt is investment in capital used in the clean sector, kgt , kDt , ht are capital stocks
in the general, dirty and clean sectors respectively, τDt is the carbon tax, τHt is the subsidy, and DE

t

and Dg
t are carbon emissions in the dirty and general sectors respectively. Since we measure fossil

and renewable energy capital in gigawatts (GW), pDt and pHt are the respective prices of fossil fuels
and renewable energy capital in $/GW. The price pHt of renewable energy capital falls with our
embodied technological progress in the renewable energy knowledge and capital stock, and evolves
as (Arrow, 1962):

pHt = G(Ht) = pH0

(
Ht

H0

)−λ
(5)

However, as we treat a household as very small, we assume that their investment in renewable
energy capital does not influence its price, so that the learning-by-doing externality arises. That is,
the household takes pHt as given. The price of fossil fuel capital will be fixed, so that pDt = pD.

Finally, we assume that the household receives rebates on the taxes and pays for the subsidies
(the last two terms in the right hand side of the budget constraint), but as we assume households
are small they cannot affect these levels.

13Table A.2 in the Appendix B provides a summary of variables’ notation and definition.
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The capital stocks in the general, dirty and renewable sectors are accumulated according to the
following equations respectively:

igt = kgt+1 − (1− δg)kgt
iDt = pDt (kDt+1 − (1− δD)kDt )

iHt = pHt (kHt+1 − (1− δH)kHt )

where δg, δD, and δH are depreciation parameters, and

iDt ≥ 0 (6)

iHt ≥ 0

are the irreversibility assumptions - a non-negativity constraint on the rate of accumulation of both
dirty and clean capital.

4.2 The final-goods firms’ problem

The final goods are produced by identical firms, but output is damaged by climate change. Because
this sector exhibits constant returns to scale, we can work with aggregate variables, and so write
output:

Yt = Ω(Tt)f(Y g
t , Et) (7)

where Tt is the temperature change from pre-industrial levels, Ω(Tt) is the damage factor (1−Ω(Tt)
is the ratio of damage to output), Et is electricity and Y g

t is “general” (non-electricity) output.
The final-goods firms individually maximize their discounted profits, so that on aggregate:

∞∑
t=0

qtΠ
g
t =

∞∑
t=0

qt

(
Ω(Tt)f(Y g

t , Et)− r
g
tK

g
t − wtLt − petEt −Ψt − pfuelt Dg

t

)
where qt := βt u

′(ct)
u′(c0) is a compound discount factor for the relative price of consumption in period

t, expressed in period 0 units.14 To produce final goods, these firms rent (aggregate) capital Kg
t ,

hire labor Lt, purchase aggregate electricity Et at price pet , and buy fossil fuel Dg
t from fossil fuel

extracting firms at price pfuelt . The firms spend money on abatement Ψt, which is assumed to abate
a fraction ηt of emissions via the following relation:

Ψt =
φ1,tη

φ2
t

(1− ηt)φ3
Y g
t

so that the emissions constraint is given by:

Dg
t = σt(1− ηt)Y g

t

where φ2 and φ3 are parameters and σt represents the ratio of carbon-equivalent emissions to output,
all of which evolve exogenously along with the parameter φ1,t, as in Cai et al. (2016). Firms do not
take into account their emissions’ impact on the pollution stock and thus on productivity. In other
words, firms take Ω(Tt) as a given. This, in a conjunction with the knowledge externality in the
renewable sector, represents a “twin-market failure” (Jaffe et al., 2005).

14See Appendix D.1 for more detailed discussion on the derivation of compound interest for the firms’ problems.
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For the solution of the model, we assume that the function for production before damages takes
the constant elasticity of substitution (CES) form (Hassler et al., 2012):

f(Y g
t , Et) =

[
(1− θ)(Y g

t )1−1/κ + θ (Et)
1−1/κ

] 1
1−1/κ

.

and
Y g
t = fgt (Kg

t , Lt) = Agt (K
g
t )α(Lt)

1−α.

Here, θ, κ, and α are parameters, Agt is a technology process in the general sector, Kg
t is general

capital and Lt is labor. Both A
g
t and Lt evolve exogenously in the same way as in Cai et al. (2016).

4.3 The aggregate-electricity-producing firms’ problem

These firms again face constant returns to scale, so we can work with aggregate variables. They
produce aggregate electricity Et = fEt (Ht,Γ

ED
t ) which is a combination of fossil fuel production

capacity ΓEDt , and clean production capacity Ht, with these inputs being priced at pEHt and pEDt
respectively. They sell their output at price pet , so that the firms maximize the present value of their
profits, so that on aggregate:

∞∑
t=0

qtΠ
E
t =

∞∑
t=0

qt
(
petf

E
t (Ht,Γ

ED
t )− pEHt Ht − pEDt ΓEDt

)
In modeling the electricity sector, we follow Papageorgiou et al. (2017)15 and assume a CES pro-
duction function of renewable production capacity Ht and dirty production capacity ΓEDt :

Et = fEt (Ht,Γ
ED
t ) = AEt

(
ωHξ

t + (1− ω)(ΓEDt )ξ
)1/ξ

,

where AEt is a technology process in the electricity sector and ω and ξ are CES parameters.

4.4 The dirty-electricity-producing firms’ problem

The dirty electricity producing firms are fossil-fuel-based power stations, which combine existing
infrastructure (such as coal-based power plants) with fossil fuels via a Leontief production function.
Again, due to constant returns, we may work at the aggregate scale:

ΓEDt = min[ζtK
D
t , D

E
t /ν]

where KD
t is total capital in dirty electricity production, ζt ∈ [0, 1] is the utilization rate, and ν is

the conversion rate from fossil fuel to electricity. The Leontief function implies a fixed ratio between
utilized fossil fuel energy capital and dirty fuel use:

DE
t = νζtK

D
t . (8)

The firms buy fossil fuel DE
t at price pfuelt , rent the dirty capital infrastructure at rate rDt , and sell

their output ΓEDt to the aggregate electricity producing firms at price pEDt . So, the firms in this
sector maximize the present value of their profits, and on aggregate:

∞∑
t=0

qtΠ
D
t =

∞∑
t=0

qt

(
pEDt (ζtK

D
t )− rDt pDKD

t − p
fuel
t DE

t

)
subject to emissions constraint (8), and a constraint on the utilization rate: ζt ≤ 1.

15We do not use the version of their model in which overall energy is a combination of electricity and “other dirty
energy”, as in their model the latter requires no capital input and so is disproportionately favored under optimization.
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4.5 The fossil-fuel-extracting firms’ problem

Following Sinn (2008), we assume that the fossil-fuel extracting sector is competitive. Each rep-
resentative firm possesses a fixed and known stock of the resource of the size s0. Extraction costs
depend negatively on the stock st remaining in the ground. The fossil fuel extraction cost per unit
is given by γ1

(
s0
st

)γ2
, from which it follows that aggregate extraction costs per unit may be written

as
GD(St) = γ1

(
S0

St

)γ2
, (9)

where St is the total stock remaining at time t, and γ1 and γ2 are parameters. This equation
implies that when a smaller stock is left, the extraction cost will be higher. In this paper, we focus
on coal: this represents the greater share of potential future emissions, and also is the relevant fuel
for sectors such as coal-fired power stations, for which there are significant potential irreversibilities
in investments. We calibrate (9) to this sector: coal is relatively abundant, with relatively flat
extraction costs. See details in Appendix B.

Each individual firm extracts an amount of resource dEt + dgt in each period, which as usual we
scale up across the economy to obtain the standard aggregate depletion equation:

St+1 = St − (DE
t +Dg

t ).

The small firms act as price-takers, and the market price for their fossil fuel is pfuelt . By choosing
an optimal extraction amount at each point in time, each firm in this sector maximizes the present
value of its profits, and so on aggregate:

∞∑
t=0

qtΠ
DE
t =

∞∑
t=0

qt[p
fuel
t − τDt −GD(St)](D

E
t +Dg

t )

where τDt is a tax on the production of fossil fuels.

4.6 The renewable energy firms’ problem

The renewable sector is composed of small firms, who do not internalize the learning-by-doing exter-
nality (5). That is, on aggregate across these firms, they take the stock of accumulated knowledge
about using the renewable energy Ht as given, with a rental rate rHt . They receive a subsidy of τHt
on their dollar-valued holdings of renewable energy capital Ht and sell their output to the aggregate-
electricity-producing firms at price pEHt . The firms take all prices as given, so on aggregate they
maximize:

∞∑
t=0

qtΠ
H
t =

∞∑
t=0

qt[p
EH
t − pHt (rHt − τHt )]Ht.

Note that in the “simple model” of Section 2 we did not model renewable energy firms explicitly, so
in that model we wrote the subsidy as accruing to the householder, who also owns the capital.

4.7 Climate system, emissions and damages

The carbon dioxide emissions Dt have three sources: “general” output production Dg
t ; electricity

production from using fossil fuel DE
t ; and land use Dland

t .

Dt = DE
t +Dg

t +Dland
t (10)
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Land-use emissions Dland
t are set exogenously as by Cai et al. (2016). We use the climate system

of Cai et al. (2016), which adapts the climate system of DICE2013 (Nordhaus, 2014a) to an annual
time step. As this component of our model has been described extensively in the previous literature,
we omit explanation here, and simply denote the mapping from emissions to temperature by:

Tt =Wt(D0, . . . , Dt−1) (11)

where Tt is global atmospheric temperature change over pre-industrial levels, Ds is fossil-fuel-related
pollution at time s < t and the warming function Wt relates these two variables.

Finally, the damage factor for “DICE damages” is given by

Ω(Tt) =
1

1 + ς1T
ς2
t

, (12)

where ς1 and ς2 are parameters. However, a great deal of discussion in real-world policy-making
focuses on limiting global temperature changes to 2◦C. We simulate this constraint by letting

Ω(Tt) =
1

(1 + ς1T
ς2
t ) (1 + ς3 (Tt/ς5)ς4)

(13)

with a small positive parameter ς3 = 0.001, a large exponent parameter ς4 = 50, and ς5 = 2. Thus,
when atmospheric temperature increase Tt is smaller than 2◦C, the new damage factor given by
(13) is almost the same as (12), but when Tt is larger than 2◦C, the new damage factor will imply
larger damages than (12). This new damage factor (13) will be referred as the “stringent damage
factor”.

Our primary motivation for using this specific stringent damage factor is that it ensures optimal
policy in the model will indeed limit warming to 2◦C. However, one should note that the damage
factor (12), though commonly used, is very controversial (see, for example Weitzman 2009, 2010;
Stern 2013; Pindyck 2013, 2017; Dietz and Stern 2015; Stern 2016; Cai and Lontzek 2018). In fact
there do not exist well-founded estimates of damages for even moderate temperature changes, and so
the possibility to dictate optimal climate policy based on damage estimates is limited. Meanwhile,
the view has been taken by many that warming above 2◦C ought to be avoided. Such a constraint
ought to be based on some premise as to the consequences of passing this threshold, which our
damage factor provides.16 Indeed, if recent warnings of the world entering a ‘hothouse Earth’
trajectory beyond 2 degrees of warming are to be believed, our stringent damage factor may not be
unreasonable (see Steffen et al. 2018).

4.8 Decentralized equilibrium versus the social planner’s optimal solution

To find an optimal solution of the decentralized model, we formulate it as that of a principal who
must choose an allocation from among those that can be implemented as a decentralized equilib-
rium, bearing in mind how the other economic participants (the “agents”) will respond. In the

16One could alternatively use an explicit constraint that Tt ≤ 2 for all t. We prefer not to, in order to maintain
continuity and smoothness in this part of the model. The explicit constraint Tt ≤ 2 creates difficulties in numerically
solving for the decentralized equilibrium under the principal-agent framework (discussed in Section 4.8 and Appendix
D) due to its associated complemenarity condition (although it has no problem in solving the social planner’s problem).
This will be compounded by the “irreversibility constraints” for the investments, especially (6). Moreover, in any
scenario incorporating policies which can be used to limit temperature change at 2◦C, an optimal economy facing
our stringent damage factor (13) will very closely approximate the solutions we would obtain by using such a direct
constraint. See also Appendix D.9.
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optimal taxation literature such conditions imposed on the (Ramsey) principal are known as imple-
mentability conditions. We solve it using mathematical programming with equilibrium constraints.
The details are in Appendix D.

The previous sections laid out the decentralized equilibrium model. To retrieve the values of
the optimal carbon tax and optimal subsidies that could replicate the first-best allocation in the
decentralized equilibrium model, we also outline a social planner model where the social planner
maximizes social welfare given constraints describing the carbon cycle, temperature, damages and
fossil fuel depletion, and the capital accumulation equations. See Appendix C for details.

4.9 Subsidy and carbon tax

In the decentralized equilibrium, there are two instruments: a subsidy on renewable capital, τHt ,
and a carbon tax, τDt . There are various scenarios related to the choice of policy instruments. We
differentiate between four cases: (1) a no policy scenario in which we set τDt = 0 and τHt = 0; (2)
the optimal policy version, in which both instruments are freely chosen to maximize the principal’s
objective; (3) τDt = 0 and the subsidy is chosen freely to maximize the principal’s objective; (4)
τHt = 0 and the carbon tax is chosen freely to maximize the principal’s objective. Clearly, the second
policy yields the same outcome as the social planner’s problem, and it is the first-best, which we
prove in the appendices. Cases (3) and (4) are situations with second-best policies.

As is standard, we define:

Definition 4.1. The social cost of carbon (SCC), χt is the shadow price on carbon emissions, relative
to the shadow value of output. That is, if µDt is the shadow price of Equation (10) constraining
total emissions, then:

χt :=
µDt

u′ (Ct/Lt)
.

Again we will write gHt = Ht+1−Ht
Ht

and we prove (see Appendix D.8):

Proposition 4.2. The decentralized equilibrium allocation coincides with the solution to the social
planner’s problem if carbon taxes are set as the social cost of carbon χt, which is equal to:

χt = −u′
(
Ct
Lt

)−1 ∞∑
m=1

βmu′
(
Ct+m
Lt+m

)
∂Yt+m
∂Dt

; (14)

and if subsidies are set equal to the “learning effect”:

τHt = −(Ht+1 − (1− δH)Ht)
G′(Ht)

pHt
= λ(gHt + δH). (15)

Equation (14) says the social cost of carbon is equal to be the marginal effect of present emissions
on future welfare. This welfare impact is of course relative to the damage factor in use; we distinguish
scenarios by the use of (12) and (13). Of course, our stringent damage factor (13) is designed to
constrain emissions to 2◦C, and so not to accurately depict true welfare damages. However, as
discussed in Section 4.7 above, climate change economics has so far failed to identify a ‘true’ damage
factor. Appendix D.8 provides further discussion of an alternative interpretation of (14) in the case
of the stringent damage factor (13), as incorporating a shadow price of constraining temperatures
to 2◦C warming.

Equation (15) verifies that the theoretical insights on learning-by-doing from the “simple model”
in Section 3 all carry across to the full model. That is, Corollary 3.3 holds and we have an “accelera-
tion effect”. In particular, an increase in the carbon tax which reduces investment in and utilization
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of dirty energy capital and so increases deployment of the substitute renewable energy capital, also
implies an increase in the optimal renewable energy subsidy.

Naturally, Proposition 4.2 also shows that we can examine optimal policy by using a social
planner’s model, which is easier computationally. However, we do not restrict attention to this
simpler case; we are also very interested in worlds without optimal (first-best) policy. If only the
tax, or only the subsidy, are in use, then Proposition 4.2 does not apply. We explore such scenarios
with our numerical results.

5 Quantitative results from the calibrated model

This section presents the quantitative results in four parts.17 The first investigates the links between
irreversible investment decisions and climate policies. We compare optimal policies with and without
a stringent climate target (using the stringent damage factor (13) or the DICE damage factor (12)
respectively). In addition, we illustrate the importance of the irreversibility in investment decisions
relative to the case in which investments are reversible (the irreversibility effect). In the second
part we study the acceleration effect pertaining to an early start of investment in the renewable
sector. Next, we study the impact of climate policy stringency on the optimal carbon tax as well
as the effect of learning-by-doing on the optimal carbon tax. Finally, we study the implications of
the second-best policies for social welfare and the dynamics of the model.

The initial period in our model is 2012. The model could be run under various scenarios that can
be differentiated along three different dimensions: (1) damage function (DICE damage factor (12)
vs. stringent damage factor (13)); (2) irreversible vs. reversible investments; and (3) the choice of
policy instruments (optimal tax and subsidy vs. second-best policies). The runs of the decentralized
equilibrium under the combined optimal tax and subsidy are equivalent to the runs of the social
planner model (the first-best policy).

5.1 Irreversible investment and its implications

First, we want to understand how the optimal paths of variables depend on the irreversibility
assumption coupled with different climate policy targets. We notice that the effect of irreversibility
(compared with when the investment is reversible) becomes quantitatively important only if the
climate policy objective is ambitious enough. Figure 1 shows that the paths of investment on dirty
energy are almost the same with reversible and irreversible investments under a mild climate policy
objective (the DICE damage factor) in this century, but they are distinctly different from each other
under a more ambitious climate policy target (the stringent damage factor).

These results emphasize the importance of setting ambitious climate policies to induce perma-
nent fuel energy switching. The strong path dependence embodied in carbon-intensive infrastructure
suggests that mild climate change policies (those based on the DICE damage factor) would not in-
duce fast shifts away from dirty energy towards green energy, as would be required to meet the
Paris Agreement objectives,18 as we see in Figure 8 in Section 5.4.

Further, Figure 1 shows that with irreversible investments and the stringent policy target, there
is no investment in dirty energy after 2020. In contrast, when investment is reversible, the decumu-
lation rate of the dirty capital stock is unlimited, and we keep investing in this capital stock until

17The calibration of the model is described in Appendix B.
18This finding echoes the one in Meng (2016), who estimates the strength of path dependence in the electricity

sector for the U.S. Midwest and shows that a permanent decline in U.S. electricity sector emissions would require
shocks of larger magnitude and longer duration than that of recent natural gas prices.
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Figure 1: Investment in the Dirty Energy Capital Stock

2027 (another seven years), when we start turning dirty capital stock into general capital, a pro-
cess that continues until about 2075. However, we never entirely stop using the dirty capital stock
because of the imperfect substitutability between dirty and clean energy in electricity production.
So, since we decumulated the dirty capital stock sufficiently in the preceding decades, investment
in the dirty capital stock resumes after 2075 under reversible investment.

These dynamic patterns of investment in dirty energy with the (ir)reversible investments and
the stringent damage factor correspond to the dynamics of returns on those investments shown in
Figure 2.19 The theoretical counterpart of this figure is Lemma 2.2 in Section 2. First, the figure
shows that we end investment in the dirty capital stock when the investment is still attractive with
the rate of return, rDt − δD, exceeding the rate of return on the general economy, rgt − δg. This is
because we will only invest in infrastructure that will become obsolete if the short-term benefits from
that investment compensate for future losses. Thus even without uncertainty, returns to irreversible
investment require a premium.20 Even if we end investment at around 2020, we continue to fully
utilize the dirty capital stock for about another 25 years, until 2045, when the return on dirty capital
(rDt ) reaches zero and we start underutilizing the dirty capital stock.

In the medium-term, as we end investment sooner than in the counter-factual (when disinvest-
ment is a viable option), the economy continues to hold a smaller amount of dirty capital stock
under irreversibility compared to the reversible case, until about 2037 (the solid and dashed lines in

19The small divergence between returns in the first period is a standard artifact in dynamic models with given
initial conditions: our calibration provides a little more dirty capital stock than the short-run equilibrium would
dictate, and so returns are below the general economy for one period. A pause in investment brings the model into
balance.

20This finding has empirical support from previous studies on irreversible investment in other contexts. For example,
Bernstein and Mamuneas (2007) develop a simple model of production and investment with costly disinvestment to
estimate the magnitude of the premium associated with irreversible investment in the telecommunications industry,
assuming future telecommunications capital acquisition prices are random variables. Their findings indicate that the
premium increases the user cost of capital by 70%, which implies an average hurdle rate of 14% over the period 1986-
2002. Using different methods and framework, Pindyck (2005) provides similar estimates of the telecommunications
hurdle rate.
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Figure 2: Return on general and dirty capital

Figure 3a). After that year, however, the economy holds larger stocks of dirty capital in the long-run
if investment is irreversible. This result is due to path dependence: capital cannot be converted
into other forms of capital stock. However, if we take into consideration the underutilization of the
dirty capital stock in the irreversible investment case (marks in Figure 3a), then in the long-run, the
same total amount of dirty capital stock will be utilized under irreversible and reversible investment
decisions (marks and circles in Figure 3a).
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Figure 3: Dirty capital and emissions under the stringent climate policy target.

Because emissions from the dirty energy sector are directly proportional to utilized dirty capital,
the utilization curves in Figure 3a also give the pattern of emission levels. We show the level of
these emissions, as well as total emissions (i.e., Dt, including those from the general economy and
land-use) in Figure 3b.
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5.2 The Acceleration Effect

The theoretical result in Section 3.2 gave the optimal subsidy, when the optimal carbon tax is also
present and when the irreversibility constraint on investment in this sector does not bind (Corollary
3.3): τHt = λ

(
gHt + δH

)
. This formula implies that (i) the subsidy continues as long as there is

investment in the renewable sector, (ii) the subsidy increases with the learning coefficient λ, and
(iii) the optimal subsidy is higher when renewable capital grows faster. There are four different
mechanisms that can lead to higher capital accumulation in the renewable sector and consequently
to a higher level of subsidies: (1) more stringent climate policy targets, (2) the dirty sector could
be shrinking faster than in the reversible case due to the irreversibility effect, (3) a higher learning
rate (from higher R&D in renewables), and (4) under second-best scenario when a carbon tax is
not possible, it could be optimal to grow the renewable sector faster to crowd out the dirty energy
sector. We here investigate the first three of these channels, noting that the irreversibility constraint
on investment in renewables never binds in our model. We will consider second-best policies, which
encompass many important effects, in Section 5.4.

5.2.1 Channel 1: stringent climate policy

Figure 4a plots the optimal subsidy τHt , and Figure 4b plots the total subsidy (i.e., total amount
of dollars paid), pHt τHt Ht, under mild and stringent climate policy targets. In the stringent case we
plot with both reversible and irreversible investments on the dirty side of the energy economy, as
the clean and dirty sides will interact.

We observe in Figure 4a that the subsidy is higher under the stringent climate policy target in
the initial decades following 2012. Because we use less fossil fuels in this scenario, we must generate
more of our electricity from renewables, and so the latter sector is initially growing faster than
it is in the mild policy scenario. From mid-century onward, this order reverses: if we ignore the
additional effects due to irreversibility, a higher subsidy is paid under the mild policy target. This is
because in the stringent policy scenario, a substantial volume of renewable energy capital stock has
already been built by this point, and thereafter its growth rate is slower; thus, by the acceleration
effect, so also is the optimal subsidy.

We also observe these effects when we plot the total subsidy paid to all holders of renewable
energy capital Ht, in Figure 4b. This shows that payments are always higher under the stringent
policy target, even when the subsidy (and indeed price) of the capital stock are lower, because of
the size of Ht. (The decline in growth in these subsidy payments, starting at around 2040, mirrors
the decline in growth in Ht already seen at this time). Still, the total subsidies of the three scenarios
are converging as we approach the end of the century.

5.2.2 Channel 2: interaction with the irreversibility effect

In Figure 4, we plotted the optimal subsidies under the stringent climate policy with both irreversible
and reversible investment decisions. There is a complex relationship between the subsidy level and
the results of the irreversibility effect discussed in Section 5.1. As seen in Figures 1 and 3a, in the
early periods the dirty sector shrinks faster in the irreversible case, as compared with the reversible
case. However, this pattern reverses so that after around 2035 there is more dirty energy capital
in use in the irreversible case. Underutilization begins around 2040 but there is still excess dirty
energy capital in use until around 2070, when the trajectories converge.

So in those earlier years, when we build fewer coal-based power plants, we must be building
a greater volume of renewables instead. This explains the greater subsidy for renewables in the
irreversible case, visible in Figure 4a up to around 2020.
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Figure 4: Optimal Subsidies under Our Three Main Scenarios.

However, after this point, the subsidy to renewables drops below that for the reversible case.
This is in anticipation of the greater dirty energy capacity that will remain in the economy due
to irreversibility (instead of being decumulated, as in the reversible case). Thus, until 2045, the
subsidy in the irreversible case remains below that of the reversible case – and even below that of
the mild policy target.

But as the use of dirty capital begins to approach that of the irreversible case, it becomes
necessary to again accelerate the deployment of the substitute renewable capital. Thus, from 2045,
the subsidy to renewables in the irreversible case again exceeds that of the reversible case. The
total subsidies paid are approximately the same in both cases at this point (Figure 4b) because less
of this capital stock has been accumulated in the irreversible case, due to the prolonged reduction
in investment.21

5.2.3 Channel 3: learning rate

Figure 5 presents the level of subsidies for three different years (2018, 2050 and 2100) under different
values of the learning parameter λ. There are two important features to note. First, the level of
subsidies increases with the value of learning parameter. Second, the subsidy level for 2018 follows
a convex pattern with respect to the value of λ, whereas it follows a more linear pattern for the
other two years.

Both of these patterns can be explained by referring to our theoretical result: τHt = λ
(
gHt + δH

)
(Corollary 3.3). The primary increase of subsidy with λ is clear. In addition, the degree of convexity
of the subsidy level will be determined by the growth of deployment of renewables, gHt (our accel-
eration effect). Specifically, for 2018, there is higher growth of renewables with a higher learning
rate, because this higher rate makes it more economically advantageous to expand the sector. Thus,
at that time period, the relationship is convex. However, in 2050 and 2100, the higher growth in
renewables has already taken place and the renewables are already functioning in the economy as

21Related literature has investigated the optimal time path for innovation policy, see, for example Gerlagh et al.
(2009) and Gerlagh et al. (2014). For instance, the latter show that if the patent lifetime is finite, the optimal subsidy
starts at a high level, providing an incentive to accelerate R&D investments, and then falls over time.

23



mature technologies. As such there is no need to grow the renewable sector as fast in 2050 and 2100
as in 2018.
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Figure 5: Optimal subsidy for different values of learning rate λ in the reversible and stringent
scenario.

5.3 Optimal Carbon Taxes

The social cost of carbon (SCC) is generally considered to be the most important parameter in
climate change economics. If all other externalities are internalized, the optimal carbon tax should
be set to this level (Proposition 4.2), which is equal to the marginal effect on future welfare of present
emissions, via their effect on output. The tax is normalized according to the marginal utility of
individual consumption at the time at which it applies.

Figure 6 displays the impact of climate policy stringency on this tax, for the cases of reversible
investments, where stringency is measured by the parameter ς5 in (13). We use three levels of
stringency: ς5 = 2 is the default stringent climate policy (the “stringent” policy target used in
previous sections), ς5 = 2.2 the medium stringency, and ς5 = 2.5 the low stringency. We also
include results for the mild policy target (as defined in previous sections) which is equivalent to
the case with ς5 = ∞. The impact of stringency on carbon tax is large. For example, in 2050,
the optimal carbon tax under the mild, low stringency, medium stringency, or the default stringent
climate policy is $226/tC (USD per ton of carbon), $261/tC, $386/tC, and $542/tC, respectively.

Figure 7 presents the effect of learning-by-doing on the carbon tax in the case with reversible
investments: with a stringent climate policy target, the carbon tax is higher without learning-
by-doing as it could be expected. With learning-by-doing, the associated subsidized roll-out of
renewable energy technologies means that emissions are lower, both in the current period and in
the future. It follows, in the stringent scenario, that the marginal effect on future welfare of current
emissions is lower: a lower carbon tax is optimal. Intuitively, this is because cheap low-carbon
energy means that stringent policy targets can be met without imposing a higher carbon tax.
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Figure 6: The Effect of Policy Stringency on the Optimal Carbon Tax
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Figure 7: Optimal Carbon Tax with/without learning-by-doing in the stringent and reversible
scenario.

5.4 Second-best policies

5.4.1 Subsidy Versus Tax

As Proposition 4.2 showed, the decentralized equilibrium with the optimal carbon tax on the ex-
ternality created by fossil fuel use in the energy sector, combined with the optimal subsidy on the
leaning-by-doing externality in the renewable sector, implements the optimal allocation obtained
in the social planner’s problem (the first best). In practice, however, one of these two policy in-
struments may be unavailable, and policy makers thus have to rely on second-best policies. In this
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Optimal tax Optimal subsidy
zero subsidy zero tax

Reversible investment 2.05% 1.29%
mild climate policy target
Irreversible investment 2.05% 1.19%
mild climate policy target
Reversible investment 2.55% 3.96%
stringent climate policy target
Irreversible investment 2.55% 2.94%
stringent climate policy target

Table 1: Second-best policies: welfare loss, % of initial period consumption

section we compare the relative performance of these two policy instruments when used alone, under
alternative climate policy objectives and (ir)reversible investment decisions. This is an important
exercise given the landscape of debate regarding optimal climate policy. While these second-best
policies considered represent two extremes, considering these extremes gives us the extent of the
differences, and results for intermediate policies may be interpolated (we consider an intermediate
case in Section 5.4.2 below).

Moreover, some criticize existing subsidies as expensive and inefficient, and would prefer some-
thing closer to a tax-only policy (see e.g. Helm 2012). Conversely, if we look at actual implementa-
tions, we see that the European Union has spent a large amount on subsidies to achieve its target of
20% renewable energy by 2020, while allowing the carbon price in its trading scheme to fall to very
low levels. In between, many advocate the necessity of mixed policies, while stressing the critical
importance of carbon pricing.22

We contribute to this debate, arguing that in a second-best world, the policy instrument that
should be used depends on how stringent climate policy objectives are. More specifically, under
mild climate policy targets, as in the case with the ‘DICE’ damage factor (12), the economy is
better off (in social welfare sense) with the optimal subsidy as a policy instrument. In contrast,
under more stringent climate policy targets, as in case with the stringent damage factor (13), the
economy is better off if the optimal carbon pricing policy is adopted (see Table 1).23 As the results
reported in the Table 1 further indicate, irreversibility in investment decisions does not affect the
relative ranking of these policy instruments. Interestingly, incorporating irreversibilities reduces the
percentage loss from using the subsidy, under both policy scenarios, while making little difference
to the loss from the tax. We now discuss the reasons for these results.

Figure 8 shows the temperature, emission, and tax levels under mild climate policy targets
(the left panels) and stringent climate policy targets (the right panels), both assuming irreversible
investments. The top-left and middle-left panels show that with only carbon pricing, temperature
and emissions paths closely follow those under the first-best policy. This is accomplished with a
(slightly) higher level of carbon tax than under the first-best scenario. If we consider the more
stringent climate policy case, we observe a similar pattern of paths for temperature and emissions:

22Bowen (2011) argues that “other policies are needed, too, particularly to promote innovation and appropriate
infrastructure investment, but cannot be relied upon by themselves to bring about the necessary reductions to
emissions. Carbon pricing is crucial.”

23These findings are in line with ones in Gerlagh and van der Zwaan (2006) who use a long-term top-down model
with a decarbonization option through carbon capture and storage to show that carbon taxes do better for stringent
targets, and subsidies do better for modest targets. However, this paper uses a different approach, analyzing the
implications of the second-best instruments for climate policy in a transparent setting.
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with carbon pricing only, they closely follow the paths of the first-best (the top-right and middle-
right panels of Figure 8). The second-best tax level is again higher than the first-best counterpart.

The intuition behind these results is as follows. With only carbon pricing, there is a risk of being
“locked into” the ways of producing electricity that are currently cheap: coal-based power plants.24

Meanwhile, the alternative (producing electricity from renewables) is currently more expensive and
may not become competitive in the future. As a result, a higher level of carbon taxes on the fossil
fuel extracting firms is needed compared with the first-best scenario. But since the size of the dirty
sector in the energy sector of the economy is large relative to the renewable sector, this policy of
making the dirty sector “less competitive” through carbon taxes is relatively more costly (in welfare
terms), than the policy of making the renewable sector competitive through direct subsidies.

Contrary to carbon pricing, subsidies directly stimulate investment in renewable energy and,
once clean technologies develop and become competitive, the renewable sector crowds out the dirty
energy sector. Under less ambitious climate policy, this subsidy appears sufficient, as well as less
costly than carbon pricing (given also the relatively smaller size of the clean sector). On the other
hand, achieving the more stringent climate policy target through innovation policy is extremely
difficult as it requires decarbonization of the large dirty energy sector. Adoption of the instrument
which directly targets that sector – carbon pricing – is a policy that is associated with relatively
higher welfare.

Finally, introduction of irreversibilities reduces welfare both in the first- and second-best cases,
as the irreversibility constraint (6) is always binding at some periods (in the mild policy case it
starts to bind around the year 2080 and so this is not clearly visible in Figure 1). But because the
emission paths, and investments in dirty capital, are very similar in the “tax-only” and “optimal”
scenarios, the introduction of these irreversibilities makes no discernible difference to the welfare
lost relative to the first best, when we use the tax-only policy. This is shown in Table 1.

However, irreversibilities change the timing of the optimal subsidy: our acceleration effect (Sec-
tion 3). So if the only policy available is a subsidy, then re-optimization by the policy-maker
means that the subsidy and renewable investment levels are higher and earlier, in the presence of
irreversibilities. This change in the investment trajectory, capturing the benefits of early learning-
by-doing, reduces the net impact of the irreversibility constraint. This explains the relatively smaller
losses from the subsidy policy in Table 1 in the irreversible cases, compared with the reversible cases.

Finally, the emissions and temperature paths with carbon pricing only, irrespective of the as-
sumptions about the stringency of climate policy targets, closely follow the ones of the first-best
scenario because carbon pricing internalizes the global warming externality, and thus is better suited
to target climate policy objectives.

5.4.2 Optimal Subsidy with a Pre-specified Tax

Section 5.4.1 analyzed two extreme cases. In practice, an intermediate situation may hold. It may
be possible to have both a subsidy, and a carbon tax – but it may be politically impossible to set
the tax as high as its optimal level. Policy-makers must then adjust the subsidy to meet the policy
target. For example, the carbon tax could be pre-specified as half of the optimal carbon tax, where
the optimal carbon tax is the solution of the first-best policy with both the carbon tax and subsidy
are available. We use the mild target and reversible investment scenario to study this intermediate
situation. Figure 9b displays the pre-specified carbon tax, and Figure 9a provides the corresponding
optimal subsidy. We see that when tax is set to be zero, the subsidy is the largest; when tax is
set at its optimal level under the first-best policy, the subsidy is the smallest; and when the tax is

24See Unruh (2002) and Jaffe et al. (2005) for further discussion.
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set to be half of the first-best optimal level, the subsidy is between the previous two extreme cases.
However, this pattern is only valid before 2055: after 2070, a smaller tax will be accompanied by a
smaller subsidy, as larger subsidies in the earlier periods lead to a higher renewable energy stock,
lessening the need for subsidies in the later periods.

6 Discussion

In this paper we have studied implications of two capital stock effects – path dependence in infras-
tructure and learning-by-doing in the renewable sector – for the design of optimal climate policies,
using both simple analytical models and simulations of the full dynamic general equilibrium climate-
economy model. We define path dependence as irreversibility of investment in both the clean and
dirty energy sectors (as opposed to allowing aggregate divestment). We compare the simulation
results from our model that incorporates irreversibility, with those coming from a model without
inertia in the energy sectors.

The simulation results contribute to the debate on the characteristics of optimal policy to combat
climate change, which involve issues about the timing as well as choice of instruments to address
the problem. On the timing of climate policy, the debate has centered on whether we should adopt
a “gradual slope” approach to the policy, according to which we should delay investment in low-
carbon emitting technologies and instead focus on a carbon price that rises gradually. An alternative
approach recommends accelerating learning-by-doing and reducing abatement costs of mitigation
policies.

We demonstrate that it is optimal to stop investment in the dirty sector earlier – due to the
irreversibility effect. Previous literature has justified the early investment in the renewable sector
on the basis of the learning-by-doing effect (see, van der Zwaan et al. 2002). We have provided a
simple analytical formula relating optimal subsidies to the growth of the renewable sector and the
learning rate. Thus the optimal subsidy is higher for technologies with faster learning rates and,
in the short term, for more stringent climate policy targets. Investment displays a delicate pattern
when we account for irreversibility, as the renewable energy capital stock must grow faster in the
very short term but is then held back because the dirty sector is still in use.

Regarding the debate on the instrument choice for effective climate policy, our results on the
relative performance of carbon pricing versus subsidies in a second-best setting reflect the broad
trends in the global climate political landscape. Nowadays we observe a rapid expansion in the
use of renewable energy technologies.25 Renewable energy technologies are viewed today as tools
to mitigate climate change, improve local air quality, advance economic development and create
jobs. Declining costs have played a pivotal role in the expansion of renewable energy technologies
in recent years. The stage for such an expansion was set more than a decade ago when a handful
of countries, including Germany, Denmark, Spain, and the United States, created a critical market
for renewables, which drove early economies of scale and led to the changes we witness today
(REN21, 2014). During that period and effectively until 2016, when the Paris Agreement came
into force, progress in the area of international climate policy had been modest at best. Although
the European Union had started campaigning for the 2◦C target in the mid-1990s, this target was
not formally adopted until 2010 at the UN Climate Change Conference in Cancun (Geden, 2013).
As such, we could characterize the international climate policy up to 2015 as having unambitious
climate policy objectives. The Paris Agreement, however, renewed the climate political landscape,
at least in theory, with a larger recognition of the urgency of more ambitious emissions reductions.

25Renewables accounted for nearly half of all new power generation capacity in 2014, led by growth in China, the
United States, Japan and Germany, with costs continuing to fall (EIA, 2015).
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The agreement has also revived discussion about the importance of adopting carbon pricing to
implement the emissions mitigation pledges submitted by 186 countries for the December 2015
Paris Agreement,26 which is in line with the message from simulations of our model under the
second-best setting that more ambitious climate policy should adopt carbon pricing.

Our quantitative results under the second-best setting with a pre-specified tax illustrate how a
subsidy can be of use when political economy constraints limit the use of carbon taxes. Specifically,
in the short-run, the optimal subsidy needs to be higher to compensate for a lower level of taxes
but subsequently it is lower as renewable technologies reach maturity.

Finally, our model has important implications for understanding the problem of stranded assets
in the climate policy literature. The narrative on stranded assets that emerges from our model has
one principal component: to make low-carbon alternatives widely available, investment in those
technologies should start early enough to take advantage of learning-by-doing effects, as well as the
acceleration effect.

7 Conclusion

This paper has shown that capital stock effects of infrastructure such as coal-based power plants are
important for the design of optimal climate policies. Specifically, we characterize and then quantify
the optimal time to end investments in fossil fuel power plants in a dynamic general equilibrium
climate-economy model with irreversible “dirty” and “clean” capital investments. We find that for
temperature changes to not exceed 2◦C, investments in dirty infrastructure should end in 2020.

We show that the “Green Paradox” – that future stringent climate policy raises short-term
emissions – has a converse if we focus on demand side capital stock effects. If the dirty capital
stock cannot be converted to other forms of capital, then it is optimal to stop investing in the dirty
capital stock earlier than the case where capital investments are reversible.

Learning-by-doing significantly advances the timing of investment in renewables, not only to
prevent later stranding of fossil-fuel-based assets but also to accelerate the decline in the costs of
clean energy.

The timing of these effects depends on the stringency of climate policy targets. Climate policy
targets induce an earlier shift (within the next few decades) to clean energy and away from dirty
energy only if they are stringent. Otherwise, path dependence in energy systems and low substi-
tutability between the dirty and clean energy sources imply a prolonged period of using the dirty
capital stock.

26Baranzini et al. (2017) provide a summary of the main arguments in favor of carbon pricing in a post-Paris world.
See also Farid et al. (2016) who urge for carbon taxes (or equivalently carbon trading systems) for implementation
of the Paris pledges.
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Figure 8: Temperature, Emission, and Tax level under the mild or stringent climate policy targets
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Online Appendix for “To Build or Not to Build?
Capital Stocks and Climate Policy” (For
Online-Only Publication)

A Proofs of Theoretical Results: Simplified Model

To start with, we define:

Pt :=
∞∑
s=1

(1− δ)s−1∆t,s (rt+s − δ − et+s) .

This is the net present value of investment in the irreversible asset, infrastructure, relative to the
opportunity cost. The following technical lemma is very illuminating:

Lemma A.1. Given the framework above,

1. Pt ≤ 0 for all t.

2. it > 0 only if Pt = 0.

3. it > 0 only if both rt − δ ≤ et and rt+1 − δ ≥ et+1.

4. it > 0 with rt+1 − δ > et+1 only if it+1 = 0.

Proof of Lemma A.1. Write ot for all other sources of income, net of any other investments
(which may also be irreversible). We maximize

∞∑
t=1

βtu(ct)

subject to constraints

µbct it + ct = rtkt + ot

µit it ≥ 0

µkt it ≥ kt+1 − (1− δ)kt

The Lagrangian is:

Lt =
∞∑
t=0

βt
(
u(ct)− µbct (it + ct) + µbct (rtkt + ot) + µitit

+ µkt (it − (kt+1 − (1− δ)kt))
)

A.1



Leading to FOCs and complementary slack conditions

ct u′(ct) = µbct (A.1)

it µbct = µit + µkt (A.2)

kt+1 µkt = β(µbct+1rt+1 + µkt+1(1− δ)) (A.3)

µit ≥ 0

µitit = 0 (A.4)

µkt ≥ 0 (A.5)

µkt (it − (kt+1 − (1− δ)kt)) = 0

Substitute (A.1) and (A.2) into (A.3) and divide by βu′(ct+1):

u′(ct)

βu′(ct+1)

(
1− µit

µbct

)
= rt+1 +

(
1−

µit+1

µbct+1

)
(1− δ)

Write et+1 := u′(ct)
βu′(ct+1) −1 and ∆t,s =

∏s
s′=1

1
1+et+s′

. Re-arrange so that this will provide a forward-

looking formula for µit
µbct

:

µit
µbct

=
et+1 − (rt+1 − δ)

et+1 + 1
+

(1− δ)
(et+1 + 1)

µit+1

µbct+1

=
et+1 − (rt+1 − δ)

et+1 + 1
+

1− δ
et+1 + 1

(
et+2 − (rt+2 − δ)

et+2 + 1
+

(1− δ)
(et+2 + 1)

µit+2

µbct+2

)

=
T∑
s=1

(1− δ)s−1∆t,s (et+s − rt+s + δ) + (1− δ)T∆t,T

µit+T
µbct+T

. (A.6)

Next we will show that the final term in (A.6) tends to zero as T → ∞. Since we assumed that
there exist ε > 0 and R� 0 with −δ+ε < et < R for all t, it follows that 1−δ

1+et
< 1− ε

1+et
< 1− ε

R+1

for all t and so that (1− δ)T∆t,T → 0 as T →∞. Finally, 0 ≤ µiT ≤ µbcT for all T , by consideration
of (A.2) and (A.5). It follows that 0 ≤ µiT

µbcT
≤ 1, and hence the final term in (A.6) tends to 0 as

T →∞, and we conclude:

µit
µbct

=
∞∑
s=1

(1− δ)s−1∆t,s (et+s − rt+s + δ) =: −Pt (A.7)

with per-period equation: ∆−1
t,1

µit
µbct

= (et+1 − rt+1 + δ) + (1− δ)
µit+1

µbct+1

(A.8)

Part 1 of Lemma A.1 follows from (A.7). Next, if it > 0, complementary slackness (A.4) tells us
µit = 0 and so Part 2 follows from (A.7).

If it > 0 then by (A.4) µit = 0, and since µit+1 ≥ 0 and µit−1 ≥ 0, (A.8) implies rt+1 − δ ≥ et+1

and rt − δ ≤ et. In addition, Part 4 follows, in the same way as the previous result: if it > 0 with
rt+1 − δ > et+1, then (A.8) implies µit+1 > 0 and then it+1 = 0 from (A.4). �

Proof of Lemma 2.1. Immediate from Lemma A.1 Part 3. �

A.2



Proof of Lemma 2.2. If rs1 − δ < es1 then is1−1 = 0 (by Lemma A.1 Part 3). However, by
assumption, i0 > 0. Let t0 be maximal such that t0 < s1 and it0 > 0. Now, by Lemma A.1 Part 2,
Pt0 = 0. So:

0 = Pt0 =

s1−t0∑
s=1

(1− δ)s−1∆t0,s(rt0+s − δ − et0+s) +

∞∑
s=s1−t0+1

(1− δ)s−1∆t0,s(rt0+s − δ − et0+s)

=

s1∑
s=t0+1

(1− δ)s−t0−1∆t0,s−t0(rs − δ − es) +
∞∑
s=1

(1− δ)s1−t0+s−1∆t0,s1−t0+s(rs1+s − δ − es1+s)

(A.9)

It is easy to show that, for any t1, t2, we have ∆0,t1∆t1,t2 = ∆0,t1+t2 . Thus ∆0,t0∆t0,s1−t0+s =
∆0,s1+s. It also follows that ∆0,s1∆s1,s = ∆0,s1+s, and that ∆0,t0∆t0,s1−t0 = ∆0,s1 . Putting these
facts together we see that ∆t0,s1−t0+s = ∆t0,s1−t0∆s1,s So, continuing from (A.9), we see

Pt0 =

s1∑
s=t0+1

(1− δ)s−t0−1∆t0,s−t0(rs − δ − es)

+ (1− δ)s1−t0∆t0,s1−t0

∞∑
s=1

(1− δ)s−1∆s1,s(rs1+s − δ − es1+s)

=

s1∑
s=t0+1

(1− δ)s−t0−1∆t0,s−t0(rs − δ − es) + (1− δ)s1−t0∆t0,s1−t0Ps1 . (A.10)

But Ps1 ≤ 0 by Lemma A.1 Part 1. And it0 > 0 so rt0 − δ ≤ et0 by Lemma A.1 Part 3. Thus:

s1∑
s=t0+1

(1− δ)s−t0−1∆t0,s−t0(rs − δ − es) ≥ 0.

Since rs1 − δ − es1 < 0 it follows that there exists s ∈ {t0 + 1, . . . , s1 − 1} such that rs − δ > es.
Letting s0 be the minimal such s, it is clear that this meets our requirements. �

Proof of Lemma 2.3. By exactly the same arguments as those used to prove (A.10), and by
Ps2 ≤ 0, it follows that

0 = P0 =

s2∑
s=1

(1− δ)s−1∆0,s(rs − δ − es) + (1− δ)s2∆0,s2Ps2

≤
s2∑
s=1

(1− δ)s−1∆0,s(rs − δ − es)

By splitting the sum into terms with s ∈ {1, . . . , s1 − 1} and s ∈ {s1, . . . , s2}, and rearranging, we
obtain the expression given. �

Proof of Corollary 2.4. This follows straightforwardly from Lemma 2.2 where we let w2 → ∞.
Let t0 the minimal time such that it = 0 for all t ≥ t0; by Lemma 2.2 such a t0 exists (although it
need not be identified with the “s0” found in that Proposition). By definition it0−1 > 0. Thus we
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may apply the Proposition using t0 − 1 as year 0. In particular, then

1

1− δ

s1∑
s=t0

(
1− δ
1 + e

)s
((rs − δ)− e) ≥

1

1− δ

∞∑
s=s1

(
1− δ
1 + e

)s
(e− (rs − δ))

Using the assumed bounds for rs − δ in the relevant ranges, it follows that

s1−1∑
s=t0

(
1− δ
1 + e

)s
d1 ≥

∞∑
s=s1

(
1− δ
1 + e

)s
d2

⇒ d1

(
1−

(
1− δ
1 + e

)s1−t0)
≥ d2

(
1− δ
1 + e

)s1−t0
⇒
(

1− δ
1 + e

)s1−t0
≤ d1

d1 + d2

⇒ s1 − t0 ≥
log
(

d1
d1+d2

)
log
(

1−δ
1+e

) =
log(d1 + d2)− log(d1)

log(1 + e)− log(1 + δ)

where for clarity we write the numerator and denominator as positive numbers. �

Proof of Corollary 2.5. First, see that without the constraint It ≥ 0 we have r̃t− δ = et for all t.
Next, since I0 > 0 we know P0 = 0 by Lemma A.1 Part 2. If rt − δ = et = r̃t − δ for all t then

Kt = K̃t for all t, but this is not possible since Ĩt1 < 0 and It1 ≥ 0. If we assume rt − δ ≥ et for all
t we must conclude also rt − δ > et for some t, whence P0 > 0, which is a contradiction. So there
exist some minimal s1 such that rs1 − δ < es1 and some maximal s2 ∈ R ∪ {∞} such that s2 ≥ s1

and rt − δ < et for t ∈ {s1, . . . , s2}. Applying Lemma 2.2 we conclude that there exists s0 ≤ s1 − 1
such that rs0 − δ > es0 and such that It = 0 for t ∈ {s0, . . . , s2 − 1}. Pick s0 minimal with these
properties.

We show that s0 is minimal such that rt − δ 6= et. First, by definition of s1, there is no t < s0

with rt− δ < et. Next, if rt− δ > et for t < s0 then there exists t′ ∈ {t, . . . , s0−1} such that It′ > 0
(for otherwise s0 is not minimal as defined). But P0 = 0 and Pt′ = 0 imply that there must also
exist t′′ ∈ {1, . . . , t′} such that rt′′ − δ < et′′ , and we already know this is not so.

Since rt − δ = et = r̃t − δ for t ∈ {0, . . . , s0 − 1}, it follows that Kt = K̃t for t ∈ {0, . . . , s0 − 1}
and so that It−1 = Ĩt−1 ≥ 0 for t ∈ {0, . . . , s0 − 1}. So we know t1 ≥ s0.

Next, rs0 − δ > es0 = r̃s0 − δ so Ks0 < K̃s0 ; but Ks0−1 = K̃s0−1, so Is0−1 < Ĩs0−1. So set
t0 := s0 − 1.

Finally, by definition rs1−δ < es1 = r̃s1−δ, which impliesKs1 > K̃s1 . ButKt0+1 < K̃t0+1 and so,
since It = 0 for t ∈ {t0 +1, . . . , s2−1} we conclude that Kt < K̃t for t ≤ {t0 +1, . . . ,min(s2−1, t1)}.
Since s1 ≤ s2 − 1 and since Ks1 > K̃s1 we conclude that min(s2 − 1, t1) = t1, i.e. that Kt < K̃t for
t ∈ {t0 + 1, . . . , t1} as required. �

The Social Planner’s problem for Section 3.1 The planner maximizes

∞∑
t=0

βtLtu

(
Ct
Lt

)
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subject to the constraints:

Λst It + Ct = ft(Ht, Ot) (A.11)

µIt It ≥ 0 (A.12)

µHt It = pHt (Ht+1 − (1− δ)Ht) (A.13)

µpt pHt = G(Ht) (A.14)

where Ot = Ltot represents all other factors of production in the economy. In our model the planner
treats this as exogenous.

At time t, the Lagrangian is

Lt =
∞∑
t=0

βt

(
Ltu

(
Ct
Lt

)
− Λst

(
It + Ct − ft(Ht, Ot)

)
+ µIt It

+ µHt (It − pHt (Ht+1 − (1− δ)Ht)) + µpt (p
H
t −G(Ht))

)

the first order conditions are:

∂Ct : Λst = u′
(
Ct
Lt

)
(A.15)

∂Ht+1 : pHt µ
H
t = β

(
Λst+1

∂ft+1

∂Ht+1
+ µHt+1p

H
t+1(1− δ)

)
− βµpt+1G

′(Ht+1) (A.16)

∂It : Λst = µHt + µIt (A.17)

∂pHt : µpt = µHt (Ht+1 − (1− δ)Ht) (A.18)

together with the constraints above and the inequality µIt ≥ 0, which is complementary slack with
(A.12).

Proof of Proposition 3.1. Divide (A.16) through by pHt βΛst+1, substitute in (A.17) and (A.18)
and re-arrange to obtain:

Rt+1 =
µHt − β(1− δ)µHt+1

βΛst+1

=
1

pHt

∂ft+1

∂Ht+1
+

(
1−

µIt+1

Λst+1

)
pHt+1 − pHt

pHt
(1− δ)−

(
1−

µIt+1

Λst+1

)
Ht+2 − (1− δ)Ht+1

pHt
G′(Ht+1)

if It+1 > 0 then, by complementary slackness, µIt+1 = 0. Thus, multiplying both sides by pHt
pHt+1

, and
substituting in the definition for direct returns we obtain the expression given.

Finally, in the case It+1 > 0, the defining formula for Rt+1 becomes just:

Rt+1 =
Λst − β(1− δ)Λst+1

βΛst+1

=
u′(Ct/Lt)

βu′(Ct/Lt)
− 1 + δ = et+1 + δ.

(where we substitute also from (A.15)), as required. �
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Corollary A.2. Assume that G′(H) < 0 and Ht+1 > (1− δ)Ht. If δ = 1 then pHt
pHt+1

Rt+1 > rst+1. If

δ = 0, if G is convex, and if Ht+2 −Ht+1 = Ht+1 −Ht then
pHt
pHt+1

Rt+1 < rst+1.

Regarding the case in which the price effect dominates the learning effect: the assumption of
convexity for the function G giving the decline in prices, is very natural. The assumption that
capital is increasing by a constant amount, rather than a constant factor, is less so; and increases
in Ht+2 −Ht+1 relative to Ht+1 −Ht will increase

pHt
pHt+1

Rt+1 relative to rst+1. In general we expect
the learning effect to dominate, but it is worth noting that when capital is very persistent, and
when there is a considerably delay in realizing the benefits of learning, then the extent to which the
learning effect pushes the shadow return above the direct return, is mitigated by the price effect.

Proof of Proposition 3.2. Considering first the firm, there is no inter-temporal element to
their objective function or constraints and so we can consider their optimization period-by-period;
obviously the relevant first-order condition is that

∂ft
∂Ht

= rtp
H
t . (A.19)

Meanwhile, the household maximizes:

∞∑
t=0

βt
Lt
L0
u

(
L0

Lt
ct

)
subject to the constraints:

Λt it + ct = (rt + τt)p
H
t ht + ot

µit it ≥ 0 (A.20)

µht it = pHt (ht+1 − (1− δ)ht)

Additionally, the price is constrained by pHt = G(Ht), but the household does not take this into
account. At time t, the Lagrangian is

Lt =
∞∑
t=0

βt

(
Lt
L0
u

(
L0

Lt
ct

)
− Λt

(
it + ct − (rt + τt)p

H
t ht − ot

)
+ µitit

+ µht (it − pHt (ht+1 − (1− δ)ht))

)

the first order conditions are:

∂ct : Λt = u′
(
L0

Lt
ct

)
= u′

(
Ct
Lt

)
(A.21)

∂ht+1 : pHt µ
h
t = βΛt+1(rt+1 + τt+1)pHt+1 + βµht+1p

H
t+1(1− δ) (A.22)

∂it : Λt = µht + µit (A.23)

together with the constraints above and the inequality µit ≥ 0, which is complementary slack with
(A.20).
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Substitute (A.19) into (A.22) and rearrange: now this first order condition reads:

pHt µ
h
t = β

(
Λt+1

∂ft+1

∂Ht+1
+ µht+1p

H
t+1(1− δ)

)
+ βΛt+1τt+1p

H
t+1 (A.24)

We seek the equation for τt+1 that will lead to the same solution as in the social planner’s problem;
as derived above, this is defined by constraints (A.11)–(A.14), first order conditions (A.15)–(A.18)
and the inequality µIt ≥ 0, which is complementary slack with (A.12). Those equations are all
counterparts to the equations of this model, with the exception of (A.24): we wish this to imply
(A.16). But this will be the case if we set (substituting in also (A.18))

Λt+1τt+1p
H
t+1 = −µht+1(Ht+2 − (1− δ)Ht+1)G′(Ht+1)

⇔ τt+1 = −
µht+1

Λt+1

Ht+2 − (1− δ)Ht+1

pHt+1

G′(Ht+1)

So if it > 0, which implies µht+1 = Λt+1, then the two models are defined by the same first-order
conditions in variables Ct, Ht and It. In each case pHt is defined by Ht, so if Ot = L0ot for all t then
the solutions are equal – that is, this level of subsidy achieves the social optimum (subject to Ot).

We have treated ot and Ot as exogenous for both the household and the social planner. More
generally, a model will allow optimization in all factors of production and sources of income. How-
ever, if all externalities except for the learning-by-doing in pHt have been internalized, then by the
Coase Theorem and the First Welfare Theorem, it follows that the optimal O∗t for the planner
satisfies O∗t = L0o

∗
t , where o∗t is optimal for the household, so the solutions to the models coincide.

�

Proof of Corollary 3.3. If pHt = G(Ht) = pH0

(
Ht
H0

)−λ
, then

G′(Ht) = −λp
H
0

H0

(
Ht

H0

)−λ−1

= −λp
H
0

Ht

(
Ht

H0

)−λ
= −λp

H
t

Ht

Hence, in this case,

τt = λ

(
Ht+1

Ht
− (1− δ)

)

B Calibration

This section describes calibration of the model. We build on the seminal “DICE 2013” climate-
economy model of Nordhaus (2014a), which serves as benchmark in the literature and policy ap-
plications. Some of the parameter values are drawn from the existing studies, in particular, from
Hassler et al. (2012), Papageorgiou et al. (2017) and Rezai and van der Ploeg (2017). All the
parameter values are summarized in Table A.1. Details of the calibration are as follows:

B.1 Production

Labor L0 is given for 2012 using United Nations data. We assume it continues to evolve as in DICE
2013. We set the value of elasticity of substitution between general output, Y g, and electricity, E,
in the final-goods production function, κ = 0.46, following Rezai and van der Ploeg (2017), as a
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compromise between short-term insubstitutability (Hassler et al. (2012)) and longer-term substi-
tutability. We take the value of θ from Papageorgiou et al. (2017) to be 0.003. The technology
weightings Ag0 and AEt will be set to match other data. Subsequently, Agt evolves as in DICE, and
AEt evolves in step with it. We set α = 0.4 as an approximation of the values Papageorgiou et al.
(2017) get in their various specifications, but this is also commonly-used value in the literature. We
set the deprecation rate of the general capital stock at δg = 0.05 following Rezai and van der Ploeg
(2017).

In modeling the electricity sector we follow Papageorgiou et al. (2017): we set the value of w
at 0.32 (across various specifications, they find w = 0.19 to 0.70, with a mean of 0.32). We set
the value of the substitution parameter ξ = 0.46, in line with their estimates. We find the initial
generating capital stocks for the dirty and renewable generating capacity from EIA data.27 We set
AE0 so that electricity output in the first period matches the EIA data on electricity output in 2012.

In calibrating the prices of fossil and renewable energy capital pDt , pHt , we set pDt to be constant
and to match the current price of new coal-fired power stations in China, as these may be the
marginal new plants in consideration.28 For pHt , see the section below. Exponential depreciation for
fossil fuel and renewable energy capital is calculated so that the net lifetime availability of capital
is equal to the general expected lifetime of plants in this sector: 40 and 25 years respectively.

We know the initial value of KD
t from EIA data for 2012, and Dt from European Union data.

We assume that initially ζt = 1.
The function form of fossil fuel extraction cost is taken from Rezai and van der Ploeg (2017),

but we calibrate it differently because we are more concerned with the price of coal than oil. So we
set γ1 to represent the cost of coal in 2012 (IEA2014 data), which we have converted to give this
cost as a price per GtC of CO2 pollution (so that fuel and pollution will be in a straightforward 1:1
ratio), to give a cost of 0.09 trillion 2010$ / GtC. We take S0 = 2000.29 Using the IEA estimate
of the cost of coal in 2040 along a given trajectory, and the additional fractional fossil stock use
that this would represent, the second parameter of the resource cost equation is calculated to be
γ2 = 1.64.

We set the value of φ2 in the mitigation expenditure function Ψt from DICE2013.
27All fossil generating capacity has been included on the “dirty” side. For renewables, we exclude hydropower,

because it is a relatively mature source of electricity (costs are not falling very fast) and its use is constrained by
physical geography, with a large fraction of suitable sites already in use (so its use cannot expand fast), so this
technology does not represent the features of interest in the model. Since extensive hydropower capacity already
exists, the inclusion of existing capacity would severely bias the trajectory of the equation relating renewable capital
to cost of renewable capital.

28Numbers taken from Energy and Environmental Economics, Inc. (2012).
29The proven resources of all fossil fuels may be estimated as 1003 GtC using EIA data. However continued

exploration will enlarge these stocks. We use the stock figure of 2000 GtC.
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Parameter Value Units Definition
L0 7.10 billion people Population
Ag0 2.53 Productivity
Kg

0 150.00 trillion 2010$ Initial ‘general’ capital stock
θ 0.003 Energy share parameter, global output
α 0.4 Share of capital, global output
κ 0.46 Elas of substitution btw energy and capital/labor
ξ 0.46 Elas of subs between clean and dirty electricity capital
ω 0.32 Weight on renewable capital in electricity output
D0 9.4 GtC CO2 Emissions in year 2012
Dland

0 0.90 GtC Land-use CO2 emissions in year 2012
DE

0 3.30 GtC Electricity CO2 emissions in year 2012
Dg

0 5.22 GtC General economy CO2 emissions in 2012
ν 0.91 GtC/(tW capacity) Fuel use & emissions from dirty electricity production
S0 2000 GtC Existing stock of fossil fuel (as of 2012)
Y0 60.11 trillion 2010$ Initial gross world output
KD

0 3.61 tW Initial capital stock of fossil technology
H0 0.46 tW Initial renewable-energy-knowledge capital stock
pD 0.57 trillion 2010$/tW Price of dirty electricity capital
pH0 2.11 trillion 2010$/tW Initial price of clean electricity capital
δg 0.05 year−1 Capital stock depreciation rate
δD 0.025 year−1 Fossil energy capital depreciation
δH 0.04 year−1 Renewable energy capital depreciation
γ1 0.09 trillion 2010$/GtC Parameter of fuel extraction costs
γ2 1.64 Parameter of fuel extraction costs
AE0 6.93 Productivity of energy production
λ 0.295 Rate of learning.
ς1 0.00267 Damage function parameter.
ς2 2 Damage function parameter.
ς3 0.001 Damage function parameter.
ς4 50 Damage function parameter.
φ2 2.8 Mitigation expenditure parameter.
φ3 0.01 Mitigation expenditure parameter.
σ0 0.0904 GtC/trillion 2010$ the carbon-equivalent emissions to output ratio.
φ1,0 0.041 Backstop costs.

Table A.1: Parameter values
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Variable Definition
ct Per-household consumption
Lt Population at period t
Kg
t Aggregate capital stock in general economy

KD
t Aggregate dirty capital stock

Ht Aggregate clean (renewable) capital stock
Igt Aggregate investment in general economy
IDt Aggregate investment in dirty capital stock
IHt Aggregate investment in clean (renewable) capital stock
Ψt Abatement
St Fossil fuel stock at period t
GD(St) Fossil fuel extraction costs
rDt Rate of return on fossil (dirty) capital
rHt Rate of return on renewable (clean) capital
rgt Rate of return on general capital
Πg
t Total profits from sale of the final goods

ΠD
t Total profits from sale of the dirty fuel based electricity

ΠH
t Total profits from sale of the clean electricity

ΠDE
t Total profits from sale of the fossil fuel

ΠE
t Total profits from sale of the aggregate electricity

Πt Sum of all profits
πt Total profits per-household
pDt Cost of fossil fuel capital
pHt Cost of renewable energy capital
pEHt Price of electricity generated by clean power stations
pEDt Price of electricity generated by fossil fuel based power plants
pet Price of aggregate electricity
pfuelt Price of dirty fossil fuel
ΓEDt Electricity generated by fossil-fuel based power plants
Yt = f(Y g

t , Et) Total output before damages
Y g
t Output of the general economy
Et = fEt (Ht,Γ

ED
t ) Aggregate electricity

ζt Utilization rate of dirty capital stock
ηt Emission control rate in the general sector
wt Wage
DE
t Fossil fuel (e.g., coal) used in production of electricity

Dg
t Fossil fuel used in the general economy

Table A.2: Variables notation and definition

C The Setup of Social Planner’s Problem

We will consider two alternative perspectives for returns on investment, which will be relevant in
different contexts. First, as in Section 3.1, we define:

Definition C.1. The shadow returns on investment in the general, dirty and renewable capital
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stocks are defined to be respectively Rgt , RDt and RHt so that:

Rgt+1 :=
µKgt − β(1− δg)µKgt+1

βu′ (Ct+1/Lt+1)

RDt+1 :=
µKDt − β(1− δD)µKDt+1

βu′ (Ct+1/Lt+1)

RHt+1 :=
µKHt − β(1− δH)µKHt+1

βu′ (Ct+1/Lt+1)

where µKgt , µKDt and µHt are the shadow prices on the capital accumulation constraints as below.

On the other hand, one might consider the more immediate definitions for direct economic
returns to investment:

Definition C.2. The direct economic returns on investment in the general, dirty and renewable
capital stocks are defined respectively to be rgt , rDt and rHt so that:

rgt+1 :=
∂

∂Kg
t+1

(Yt+1 −Ψt+1)

rDt+1 :=
1

pDt+1

∂

∂KD
t+1

(Yt+1 −Ψt+1)

rHt+1 :=
1

pHt+1

∂

∂Ht+1
(Yt+1 −Ψt+1)

Here we measure the direct effects of investment on output net of mitigation costs, and the
output is

Yt = Ω(Tt)f(Y g
t , Et) (A.25)

with Y g
t = fgt (Kg

t , Lt).
The social planner’s problem is outlined below. Specifically, the social planner maximizes the

social welfare function:
∞∑
t=0

βtLtu

(
Ct
Lt

)
(A.26)
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subject to constraints:

Yt = Igt + IDt + IHt + Ct +GD(St)(D
E
t +Dg

t ) +
φ1,tη

φ2
t Y

g
t

(1− ηt)φ3
µBCt (A.27)

St+1 = St −DE
t −D

g
t µSt (A.28)

Dt = DE
t +Dland

t +Dg
t µDt (A.29)

Tt =Wt(D0, . . . , Dt−1) µWt (A.30)

Et = fEt (Ht, ζtK
D
t ) = AEt

(
ω(Ht)

ξ + (1− ω)(ζtK
D
t )ξ
)1/ξ

µEt (A.31)

DE
t = νζtK

D
t µDEt (A.32)

Dg
t = σt(1− ηt)Y g

t µDgt (A.33)

ζt ≤ 1 µζt (A.34)

pHt = G(Ht) µpHt (A.35)

Igt = Kg
t+1 − (1− δg)Kg

t µKgt (A.36)

IDt = pD(KD
t+1 − (1− δD)KD

t ) µKDt (A.37)

IHt = pHt (Ht+1 − (1− δH)Ht) µKHt (A.38)

IDt ≥ 0 µIDt (A.39)

IHt ≥ 0 µIHt (A.40)

(We do not need to specify ζt ≥ 0 as this will never be violated in the optimum.) So we calculate
the Lagrangian L as

L =
∞∑
t=0

βt
[
Ltu

(
Ct
Lt

)
− µSt (St+1 − St +DE

t +Dg
t ) + µDt (Dt −DE

t −Dland
t −Dg

t )

]

+

∞∑
t=0

βtµWt (Tt −Wt(D0, . . . , Dt−1))

+
∞∑
t=0

βtµBCt

[
Ω(Tt)f(Y g

t , Et)− I
g
t − IDt − IHt − Ct −GD(St)(D

E
t +Dg

t )−
φ1,tη

φ2
t Y

g
t

(1− ηt)φ3
]

−
∞∑
t=0

βt
[
µEt (Et − fEt (Ht, ζtK

D
t ))
]

+

∞∑
t=0

βt
[
µDEt (DE

t − νζtKD
t ) + µDgt (Dg

t − σt(1− ηt)Y
g
t ) + µpHt (pHt −G(Ht)) + µζt (1− ζt)

]
+
∞∑
t=0

βt
[
µKgt

(
Igt −K

g
t+1 + (1− δg)Kg

t

)]
+

∞∑
t=0

βt
[
µKDt

(
IDt − pDKD

t+1 + pD(1− δD)KD
t

)
+ µIDt IDt

]
+
∞∑
t=0

βt
[
µKHt

(
IHt − pHt Ht+1 + pHt (1− δH)Ht

)
+ µIHt IHt

]
(A.41)
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We obtain the following first order conditions (using shorthand ft for f(Y g
t , Et), f

g
t for fgt (Kg

t , Lt),
etc.)

∂Ct : u′
(
Ct
Lt

)
= µBCt (A.42)

∂St+1 : βµSt+1 = µSt + βµBCt+1

dGD

dS
(St+1)(DE

t+1 +Dg
t+1) (A.43)

∂DE
t : µDEt = µSt + µDt + µBCt GD(St) (A.44)

∂Dg
t : µDgt = µSt + µDt + µBCt GD(St) (A.45)

∂Dt : µDt =
∞∑
m=0

βmµWt+m
∂Wt+m

∂Dt
(A.46)

∂Tt : µWt = −µBCt Ω′(Tt)ft (A.47)

∂Et µEt = µBCt Ω(Tt)
∂ft
∂Et

(A.48)

∂Kg
t+1 : µKgt = βµKgt+1(1− δg) + βµBCt+1

(
Ω(Tt+1)

∂ft+1

∂Y g
t+1

−
φ1,t+1η

φ2
t+1

(1− ηt+1)φ3

)
∂fgt+1

∂Kg
t+1

(A.49)

∂Igt µKgt = µBCt (A.50)

∂KD
t+1 pDµKDt = βpDµKDt+1 (1− δD) + βζt+1

(
µEt+1

∂fEt+1

∂(ζt+1KD
t+1)

− µDEt+1ν

)
(A.51)

∂IDt µKDt = µBCt − µIDt (A.52)

∂Ht+1 pHt µ
KH
t = βpHt+1µ

KH
t+1 (1− δH) + βµEt+1

∂fEt+1

∂Ht+1
− βµpHt+1G

′(Ht+1) (A.53)

∂IHt µKHt = µBCt − µIHt (A.54)

∂pHt : µpHt = µKHt (Ht+1 − (1− δH)Ht) (A.55)

∂ζ : µζt = KD
t

(
µEt

∂fEt
∂(ζtKD

t )
− µDEt ν

)
(A.56)

∂ηt : σtµ
Dg
t = µBCt

φ1,tη
φ2−1
t

(1− ηt)1+φ3
[φ2(1− ηt) + ηtφ3] (A.57)

together with constraints (A.27)–(A.40) and inequalities µζt ≥ 0, µIDt ≥ 0, µIHt ≥ 0 which are
complementary slack with corresponding equations (A.34) and (A.39)-(A.40).

It is useful to prove the following proposition, which gives an expression for the rates of return
plotted in Figure 2.

Proposition C.3. In the optimal social planner’s solution,

Rgt+1 = rgt+1

RDt+1 =
ζt
pD

(
∂Yt+1

∂(ζtKD
t+1)

− ν
µDEt+1

u′(Ct+1/Lt+1)

)
= rDt+1 −

νζt
pD

µDEt+1

u′(Ct+1/Lt+1)

where µDEt+1 is the shadow price on constraint (A.32), which determines emissions DE
t+1 from the use

of dirty energy capital.
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Returns on general capital take into account the mitigation expense involved in the use of general
capital. Returns on dirty energy capital are given by the marginal productivity of fossil fuel capital
infrastructure in output, net of the shadow price of fuel used alongside it, and scaled by the price
of this capital stock. Considering what Definition C.2 and Proposition C.3 tell us about general
capital, throughout the rest of the paper, we refer to rgt as the return on investment in the general
capital stock.

Proof of Proposition C.3. Substitute (A.42) and (A.50) into (A.49) and use Definition C.1 to
prove that Rgt+1 = rgt+1. It has been presented in a more compact form from the observations that

Yt+1 = Z(Tt+1)ft+1 and Ψt+1 =
φ1,t+1η

φ2
t+1

(1−ηt+1)φ3
Y g
t+1. The form that is most useful for further derivations

is (from (A.50)):

Rgt+1 − δ
g =

µBCt
βµBCt+1

− 1. (A.58)

For RDt+1, divide (A.51) by βpDµBCt+1 and substitute (A.48), and then (A.52) and (A.42) to obtain

µKDt
βµBCt+1

=
µKDt+1

µBCt+1

(1− δD) +
ζt+1

pD

(
Z(Tt+1)

∂ft+1

∂Et+1

∂fEt+1

∂(ζt+1KD
t+1)

−
µDEt+1

µBCt+1

ν

)

⇒ ζt+1

pD

(
∂Yt+1

∂(ζt+1KD
t+1)

−
µDEt+1

µBCt+1

ν

)
=

µKDt
βµBCt+1

−
µKDt+1

µBCt+1

(1− δD) = RDt+1

as required. �
To prove Proposition 4.2 of the main text, we will use the following results.

Proposition C.4 (The social cost of carbon). In an optimal solution:

χt = −u′
(
Ct
Lt

)−1 ∞∑
m=1

βmu′
(
Ct+m
Lt+m

)
∂Yt+m
∂Dt

. (A.59)

Proof of Proposition C.4 (Social Cost of Carbon). Substitute (A.47) into (A.46), and divide
through by µBCt , to obtain:

µDt
µBCt

= −
∞∑
m=0

βm
(
µBCt+m
µBCt

Ω′(Tt+m)ft+m

)
∂Wt+m

∂Dt

= −
∞∑
m=1

βm
(
µBCt+m
µBCt

Ω′(Tt+m)ft+m

)
∂Wt+m

∂Dt
(A.60)

where the sum is from m = 1 because ∂Wt
∂Dt

= 0. Next, note that

∂Yt+m
∂Dt

= Ω′(Tt+m)
∂Wt+m

∂Dt
ft+m (A.61)
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Substituting (A.61), as well as (A.42), into (A.60), we obtain and write this as

χt :=
µDt

u′(Ct/Lt)
=

µDt
µBCt

= −u′
(
Ct
Lt

)−1 ∞∑
m=1

βmu′
(
Ct+m
Lt+m

)
∂Yt+m
∂Dt

. (A.62)

Since Ω′(Tt+m) < 0, we have ∂Yt+m/∂Dt < 0, then χt > 0. We call this term the social cost
of carbon (SCC). It represents the marginal future welfare effect of emissions in terms of current
welfare. �

Proposition C.5 (Hotelling with fossil stocks). Write µSt for the shadow price on Equation
(A.28) constraining the stock of fossil fuel. Then:

µSt+1

u′ (Ct+1/Lt+1)
=

µSt
u′ (Ct/Lt)

(1− δg + rgt+1) +
dGD

dS
(St+1)(DE

t+1 +Dg
t+1) (A.63)

and so
µSt

u′ (Ct/Lt)
= −

∞∑
s=1

∆t,s(G
D)′(St+s)(D

E
t+s +Dg

t+s) (A.64)

where ∆t,s =
∏s
s′=1

1
1−δg+rg

t+s′
is the compound discount factor.

That is, the return on extracting a unit of fossil fuels tomorrow should be equal to the return
on extracting an extra unit today, selling it and getting a return on it at the rate of interest, less
the increase in future extraction cost.

Proof of Proposition C.5 (Hotelling with fossil stocks). Divide (A.43) through by µBCt+1:

β
µSt+1

µBCt+1

=
µSt
µBCt

µBCt
µBCt+1

+ β
dGD

dS
(St+1)

(
DE
t+1 +Dg

t+1

)
Substitute in (A.58) and divide by β, to obtain the Hotelling rule:

µSt+1

µBCt+1

=
µSt
µBCt

(1− δg + rgt+1) +
dGD

dS
(St+1)

(
DE
t+1 +Dg

t+1

)
That is, we proved Equation (A.63) as µBCt = u′(Ct/Lt) from (A.42). To get the infinite sum,
repeatedly substitute:

µSt
µBCt

=
1

1− δg + rgt+1

(
µSt+1

µBCt+1

− (GD)′(St+1)(DE
t+1 +Dg

t+1)

)

=
1

1− δg + rgt+1

(
1

1− δg + rgt+2

(
µSt+2

µBCt+2

− (GD)′(St+2)(DE
t+2 +Dg

t+2)

)

− (GD)′(St+1)(DE
t+1 +Dg

t+1)

)

= −
∞∑
s=1

∆t,s(G
D)′(St+s)

(
DE
t+s +Dg

t+s

)
where ∆t,s =

∏s
s′=1

1
1−δg+rg

t+s′
. That is, we have proved Equation (A.64). �
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Proposition C.6 (Returns on dirty fuel).

∂Yt

∂DE
t

=
µSt

u′ (Ct/Lt)
+ χt +GD(St) +

pDRDt
ζtν

.

That is, in an optimal solution, the marginal productivity of fossil fuels in the final output is
equal to the shadow value of fossil fuel stocks plus the SCC, the extraction cost, and the fraction
of the rate of return on investment in KD (gross of depreciation) which represents fuel use.

Proof of Proposition C.6 (Returns on dirty fuel). Now take (A.44), divide by µBCt and
substitute in (A.59):

µDEt
µBCt

=
µSt
µBCt

+ χt +GD(St)

For RDt+1, divide (A.51) by βpDµBCt+1 and substitute (A.48), and then (A.52) and (A.42) to obtain

µKDt
βµBCt+1

=
µKDt+1

µBCt+1

(1− δD) +
ζt+1

pD

(
Ω(Tt+1)

∂ft+1

∂Et+1

∂fEt+1

∂(ζt+1KD
t+1)

−
µDEt+1

µBCt+1

ν

)

⇒ ζt+1

pD

(
∂Yt+1

∂(ζt+1KD
t+1)

−
µDEt+1

µBCt+1

ν

)
=

µKDt
βµBCt+1

−
µKDt+1

µBCt+1

(1− δD) = RDt+1

which could be written as:

RDt+1 =
ζt+1

pD

(
Ω(Tt+1)

∂ft+1

∂Et+1

∂fEt+1

∂(ζt+1KD
t+1)

− ν

(
µSt+1

µBCt+1

+ χt+1 +GD(St+1)

))
.

Now, differentiating (A.25) by DE
t and multiplying by ν:

ν
∂Yt+1

∂DE
t+1

= Ω(Tt+1)
∂ft+1

∂Et+1

∂fEt+1

∂(ζt+1KD
t+1)

So:

RDt+1 =
νζt+1

pD

(
∂Yt+1

∂DE
t+1

−
µSt+1

µBCt+1

− χt+1 −GD(St+1)

)

⇒ ∂Yt

∂DE
t

=
µSt
µBCt

+ χt +GD(St) +
pDRDt
ζtν

�

Lemma C.7. In the optimal social planner’s solution, If IHt > 0 and IHt+1 > 0 then:

pHt+1

pHt
rHt+1 = 1 + rgt+1 − δ

g −
pHt+1

pHt
(1− δH) +

(Ht+2 − (1− δH)Ht+1)

pHt
G′(Ht+1)
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Proof of Lemma C.7. Consider the equation for renewable capital (A.53). Dividing by βpHt µBCt+1,
and substituting in equations (A.48) and (A.55) as well as (A.54), we see

µKHt
βµBCt+1

=
pHt+1

pHt

(µBCt+1 − µIHt+1)

µBCt+1

(1− δH) +
Ω(Tt+1)

pHt

∂ft+1

∂Et+1

∂fEt+1

∂Ht+1

−
(µBCt+1 − µIHt+1)

µBCt+1

(Ht+2 − (1− δH)Ht+1)

pHt
G′(Ht+1).

=

(
1 +

pHt+1 − pHt
pHt

)(
1−

µIHt+1

µBCt+1

)
(1− δH) +

1

pHt

∂Yt+1

∂Ht+1

−

(
1−

µIHt+1

µBCt+1

)
(Ht+2 − (1− δH)Ht+1)

pHt
G′(Ht+1).

From (A.54) and (A.58), we have

µKHt
βµBCt+1

=
µBCt − µIHt
βµBCt+1

= (1 + rgt+1 − δ
g)

(
1− µIHt

µBCt

)
Combining the above two equations and Definition C.2, we have

(1 + rgt+1 − δ
g)

(
1− µIHt

µBCt

)
=

(
1 +

pHt+1 − pHt
pHt

)(
1−

µIHt+1

µBCt+1

)
(1− δH) + rHt+1

pHt+1

pHt

−

(
1−

µIHt+1

µBCt+1

)
(Ht+2 − (1− δH)Ht+1)

pHt
G′(Ht+1).

This gives the more general form; when IHt > 0 and IHt+1 > 0, implying µIHt = µIHt+1 = 0, then
the version given in the lemma follows. �

D Decentralized Equilibrium

A representative household maximizes:

∞∑
t=0

βt
Lt
L0
u

(
L0

Lt
ct

)
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subject to the constraints:

Λt igt + iDt + iHt + ct =
Lt
L0
wt + πt + rgt k

g
t + rDt p

D
t k

D
t + rHt p

H
t ht

+
1

L0

(
τDt (DE

t +Dg
t )− τHt pHt Ht

)
µiDt iDt ≥ 0 (A.65)

µiHt iHt ≥ 0 (A.66)

µkgt igt = kgt+1 − (1− δg)kgt
µkDt iDt = pDt (kDt+1 − (1− δD)kDt )

µkHt iHt = pHt (kHt+1 − (1− δH)kHt )

At time t, the Lagrangian is

Lt =
∞∑
t=0

βt

(
Lt
L0
u

(
L0

Lt
ct

)
− Λt

(
igt + iDt + iHt + ct

)
+ Λt

(
Lt
L0
wt + πt + rgt k

g
t + rDt p

D
t k

D
t + rHt p

H
t ht

)
+

Λt
L0

(
τDt (DE

t +Dg
t )− τHt pHt Ht

)
+ µiDt iDt + µiHt iHt + µkgt

(
igt − (kgt+1 − (1− δg)kgt )

)
+ µkDt (iDt − pDt (kDt+1 − (1− δD)kDt )) + µkHt (iHt − pHt (ht+1 − (1− δH)ht))

)

the first order conditions are:

∂ct : Λt = u′
(
L0

Lt
ct

)
= u′

(
Ct
Lt

)
(A.67)

∂kgt+1 : µkgt = β(Λt+1r
g
t+1 + µkgt+1(1− δg)) (A.68)

∂kDt+1 : pDt µ
kD
t = β

(
Λt+1p

D
t+1r

D
t+1 + µkDt+1p

D
t+1(1− δD)

)
(A.69)

∂ht+1 : pHt µ
kH
t = β

(
Λt+1p

H
t+1r

H
t+1 + µkHt+1p

H
t+1(1− δH)

)
(A.70)

∂igt : Λt = µkgt (A.71)

∂iDt : Λt = µkDt + µiDt (A.72)

∂iHt : Λt = µkHt + µiHt (A.73)

together with the constraints above and the inequalities µiDt ≥ 0, µiHt ≥ 0, which are complementary
slack with (A.65) and (A.66).

As usual we combine (A.68) with (A.71) to write:

Λt
βΛt+1

= 1− δg + rgt+1 (A.74)
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Substitute (A.73) into (A.70), divide by Λt+1, and then substitute in (A.74) and divide by β:

pHt

(
Λt

Λt+1
− µiHt

Λt+1

)
= β

(
pHt+1r

H
t+1 +

(
1−

µiHt+1

Λt+1

)
pHt+1(1− δH)

)

⇔ pHt (1− δg + rgt+1)

(
1− µiHt

Λt

)
= pHt+1r

H
t+1 +

(
1−

µIHt+1

Λt+1

)
pHt+1(1− δH)

⇔ pHt+1r
H
t+1 = pHt (1− δg + rgt+1)

(
1− µiHt

Λt

)
− pHt+1(1− δH)

(
1−

µiHt+1

Λt+1

)

Recall that also µiHt iHt = 0. So we will be able to combine this result with others below to obtain
equations determining iHt , and thus we will be able to scale up the household’s problem.

Similarly, considering dirty capital, we can substitute (A.72) into (A.69), then substitute in
(A.74) to obtain:

pDt+1r
D
t+1 = pDt (1− δg + rgt+1)

(
1− µiDt

Λt

)
− pDt+1(1− δD)

(
1−

µiDt+1

Λt+1

)

And, again, µiDt iDt = 0.
Of course, if investment is ongoing (µiHt = µiHt+1 = µiDt = µiDt+1 = 0) then these two equations are

identities between variables we are claiming are “exogenous”. In that case, these provide necessary
conditions on investment being non-zero (and non-infinite).

Moreover, because the economy is made up of identical agents behaving in this same way, we
may sum complementary slack equations over all these agents to obtain

µiHt IHt = 0

µiDt IDt = 0

Moreover, now we have equations for the solution to the maximization problem, we can scale up
from the household level. We have determined that, given prices and rates of return (equations for
which follow) aggregate consumption Ct and investments Igt , IDt , IHt are determined by (also using
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that pDt = pD):

Igt + IDt + IHt + Ct = Ltwt + πt + rgtK
g
t + rDt p

D
t K

D
t + rHt p

H
t Ht

+
(
τDt (DE

t +Dg
t )− τHt pHt Ht

)
IDt ≥ 0

IHt ≥ 0

Igt = Kg
t+1 − (1− δg)Kg

t

IDt = pD
(
KD
t+1 − (1− δD)KD

t

)
IHt = pHt

(
KH
t+1 − (1− δH)KH

t

)
u′ (Ct/Lt)

βu′ (Ct+1/Lt+1)
= 1− δg + rgt+1

rDt+1 = (1− δg + rgt+1)

(
1− µiDt

u′ (Ct/Lt)

)
− (1− δD)

(
1−

µiDt+1

u′ (Ct+1/Lt+1)

)
µiDt ≥ 0

IDt µ
iD
t = 0

rHt+1 =
pHt
pHt+1

(1− δg + rgt+1)

(
1− µiHt

u′ (Ct/Lt)

)
− (1− δH)

(
1−

µiHt+1

u′ (Ct+1/Lt+1)

)
µiHt ≥ 0

IHt µ
iH
t = 0

D.1 Compound interest for the firms’ problems

Recall our term Πt = Πg
t + ΠD

t + ΠH
t + ΠDE

t + ΠE
t . We treated that as a lump-sum. However, in

fact the firms are owned by the households, so they choose their activity to maximize the utility
pay-off to the households. Thus, for example, the final-goods firms seek to maximize

∞∑
t=0

βtΛtΠ
g
t

subject to its production constraints, where Λt is exactly the shadow price on the household’s
budget constraint above. It is equivalent to divide by Λ0 and so to use a compound discount factor
of qt := βt Λt

Λ0
= βt u

′(ct)
u′(c0) for the relative price of consumption in period t, expressed in period 0

units.
Moreover, recall from (A.74) that Λt

Λt+1
= β(1− δg + rgt+1). Thus

qt = βt
Λt
Λ0

=
βΛt
Λt−1

· βΛt−1

Λt−2
· · · βΛ1

Λ0
=

t∏
j=1

1

1− δg + rgj

qt+1

qt
=

1

1− δg + rgt+1

(A.75)
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D.2 The final-goods firms’ problem

The final-goods firms maximize

∞∑
t=0

qtΠ
g
t =

∞∑
t=0

qt

(
Ω(Tt)f(Y g

t , Et)− r
g
tK

g
t − wtLt − petEt −

φ1,tη
φ2
t

(1− ηt)φ3
Y g
t − p

fuel
t Dg

t

)

(remember that Y g
t ≡ fgt (Kg

t , Lt)) where Dg
t are fossil fuels used by these firms, pet is the price of

electricity and φ1,tη
φ2
t

(1−ηt)φ3
Y g
t is spending on abatement by these firms, so that firms face an emission

constraint given in every period by:

Dg
t = σt(1− ηt)Y g

t

The first order conditions are then:

∂Kg
t : Ω(Tt)

∂f

∂Y g
t

∂fgt
∂Kg

t

= rgt +
φ1,tη

φ2
t

(1− ηt)φ3
∂fgt
∂Kg

t

+ pfuelt σt(1− ηt)
∂fgt
∂Kg

t

(A.76)

∂Lt : Ω(Tt)
∂f

∂Y g
t

∂fgt
∂Lt

= wt +
φ1,tη

φ2
t

(1− ηt)φ3
∂fgt
∂Lt

+ pfuelt σt(1− ηt)
∂fgt
∂Lt

(A.77)

∂Et : Ω(Tt)
∂ft
∂Et

= pet (A.78)

∂ηt : pfuelt σt =
φ1,tη

φ2−1

(1− ηt)1+φ3
[φ2(1− ηt) + ηtφ3] (A.79)

Equation (A.76) is an optimal condition for demand of aggregate capital and states that the return
on capital is the marginal product of capital minus additional spending on abatement to clean a
given fraction of extra emissions and costs of fuel. Equation (A.76) is the counterpart of equation
(A.77) for labor demand. Equation (A.78) is an optimal condition for demand of electricity. Finally,
equation (A.79) says that the firm reacts to the price of fuel (implicitly to carbon tax) by choosing
the level of abatement (equivalently the level of emissions) such that the price of fuel would be equal
to the marginal cost of emissions reduction.

D.3 Aggregate-electricity-producing firms’ problem

The firms produce aggregate electricity by combining both electricity generated by fossil-fuel-based
power plants and electricity generated by renewable energy based power stations. Note that we are
taking the output from these two plants, in GW, as inputs priced by pEHt and pEDt respectively and
so we do not need to convert by pHt and pD here.

∞∑
t=0

qtΠ
E
t =

∞∑
t=0

qt
(
petf

E
t (Ht, ζtK

D
t )− pEHt Ht − pEDt (ζtK

D
t )
)

FOCs are:

pet
∂fEt
∂Ht

= pEHt

pet
∂fEt

∂(ζtKD
t )

= pEDt
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D.4 The dirty-electricity-producing firms’ problem

The dirty electricity producing firms are fossil-fuel based power stations, which combine existing
infrastructure (for example, coal-based power plants) with fossil fuel, and so maximizes:

∞∑
t=0

qtΠ
D
t =

∞∑
t=0

qt

(
pEDt (ζtK

D
t )− rDt pDKD

t − p
fuel
t DE

t

)
where firms face the emission constraint: DE

t = νζtK
D
t , and constraint ζt ≤ 1. So the Lagrangian

is (making the obvious substitution)

∞∑
t=0

qt

(
pEDt (ζtK

D
t )− rDt pDKD

t − p
fuel
t νζtK

D
t + µζt (1− ζt)

)
And the first order conditions and constraints are

∂KD
t : rDt p

D =
(
pEDt − pfuelt ν

)
ζt

∂ζt : µζt = KD
t

(
pEDt − pfuelt ν

)
µζt (1− ζt) = 0

µζt ≥ 0

where µζt is Lagrangian multiplier attached to the above constraint. Thus, if ζ < 1 then pEDt =

pfuelt ν, and rDt pD = 0 or rDt = 0. Intuitively, when there is underutilization, the market pushes the
return on dirty energy capital to zero.

D.5 The fossil-fuel-extracting firm’s problem

The firm maximizes
∞∑
t=0

qtΠ
DE
t =

∞∑
t=0

qt[p
fuel
t − τDt −GD(St)](D

E
t +Dg

t )

where τD is tax on production of fossil fuels. The firm faces the constraint:

St+1 = St − (DE
t +Dg

t )

to which we assign the shadow price µ̃t. So the Lagrangian is

Lt =
∞∑
t=0

qt

(
[pfuelt − τDt −GD(St)](D

E
t +Dg

t )− µ̃t
(
St+1 − St + (DE

t +Dg
t )
))

FOCs are:

∂(DE
t +Dg

t ) : µ̃t = pfuelt − τDt −GD(St)

∂St+1 : qtµ̃t = qt+1

(
µ̃t+1 − (DE

t+1 +Dg
t+1)

(
GD
)′

(St+1)
)
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Combining the firm’s first order conditions yields the standard Hotelling condition, into which we
then substitute from (A.75)

pfuelt − τDt −GD(St) =
qt+1

qt

(
pfuelt+1 − τ

D
t+1 −GD(St+1)− (DE

t+1 +Dg
t+1)

(
GD
)′

(St+1)
)

=
1

1− δg + rgt+1

(
pfuelt+1 − τ

D
t+1 −GD(St+1)− (DE

t+1 +Dg
t+1)

(
GD
)′

(St+1)
)

which states that the return on extracting an extra unit of fossil fuels, selling and getting a return
on it must be equal to the expected capital gain from keeping an extra unit of fossil fuels in the
earth, but extracting it tomorrow minus the increase in future extraction costs. As before, we may
repeatedly substitute forward to obtain

pfuelt − τDt −GD(St) = −
∞∑
s=1

∆t,s(D
E
t+s +Dg

t+s)
(
GD
)′

(St+s)

where ∆t,s :=
∏s
s′=1

1
1−δg+rg

t+s′
.

D.6 The renewable energy firms’ problem

In contrast to other sectors, we assume that the firms in the renewable sector are small in the sense
that they take the stock of accumulated knowledge about using the renewable energy Ht as given.
The renewable energy firms receive subsidy of τHt on their dollar-valued holdings of renewable energy
capital Ht. The firms take all prices as given, so they maximize:

∞∑
t=0

qtΠ
H
t =

∞∑
t=0

qt[p
EH
t − pHt (rHt − τHt )]Ht.

The first order condition is just:
pEHt = pHt (rHt − τHt )

D.7 The Principal’s Problem

In this section we collect all equations we need to solve the decentralized equilibrium model and
formulate it as the principal-agent problem:

max
τD,τH

∞∑
t=0

βtLtu

(
Ct
Lt

)

A.23



subject to:

Igt + IDt + IHt + Ct = Ltwt + Πt + rgtK
g
t + rDt p

DKD
t + rHt p

H
t Ht

+
(
τDt (DE

t +Dg
t )− τHt pHt Ht

)
(A.80)

IDt ≥ 0

IHt ≥ 0

Igt = Kg
t+1 − (1− δg)Kg

t

IDt = pD
(
KD
t+1 − (1− δD)KD

t

)
IHt = pHt

(
KH
t+1 − (1− δH)KH

t

)
pHt = G(Ht)

DE
t = νζtK

D
t

Dg
t = σt(1− ηt)Y g

t

u′ (Ct/Lt)

βu′ (Ct+1/Lt+1)
= 1− δg + rgt+1

rDt+1 = (1− δg + rgt+1)

(
1− µiDt

u′ (Ct/Lt)

)
− (1− δD)

(
1−

µiDt+1

u′ (Ct+1/Lt+1)

)
µiDt ≥ 0

IDt µ
iD
t = 0

rHt+1 =
pHt
pHt+1

(1− δg + rgt+1)

(
1− µiHt

u′ (Ct/Lt)

)
− (1− δH)

(
1−

µiHt+1

u′ (Ct+1/Lt+1)

)
(A.81)

µiHt ≥ 0

IHt µ
iH
t = 0

rgt =

(
Ω(Tt)

∂f

∂Y g
t

− φ1,tη
φ2
t

(1− ηt)φ3
− pfuelt σt(1− ηt)

)
∂fgt
∂Kg

t

=

(
Ω(Tt)(1− θ)

[
(1− θ)(Y g

t )1−1/κ + θ(Et)
1−1/κ

] 1/κ
1−1/κ

(Y g
t )−

1
κ − φ1,tη

φ2
t

(1− ηt)φ3

− pfuelt σt(1− ηt)
)
Agtα(Kg

t )α−1(Lt)
1−α

A.24



wt =

(
Ω(Tt)

∂f

∂Y g
t

− φ1,tη
φ2
t

(1− ηt)φ3
− pfuelt σt(1− ηt)

)
∂fgt
∂Lt

=

(
Ω(Tt)(1− θ)

[
(1− θ)(Y g

t )1−1/κ + θ(Et)
1−1/κ

] 1/κ
1−1/κ

(Y g
t )−

1
κ − φ1,tη

φ2
t

(1− ηt)φ3

− pfuelt σt(1− ηt)
)
Agt (1− α)(Kg

t )α(Lt)
−α (A.82)

pet = Ω(Tt)
∂ft
∂Et

= Ω(Tt)θ
[
(1− θ)(Y g

t )1−1/κ + θ(Et)
1−1/κ

] 1/κ
1−1/κ

E
−1/κ
t (A.83)

pfuelt σt =
φ1,tη

φ2−1
t

(1− ηt)1+φ3
[φ2(1− ηt) + ηtφ3]

pEHt = pet
∂fEt
∂Ht

= petA
E
t ωH

ξ−1
t

(
ωHξ

t + (1− ω)(ΓEDt )ξ
) 1−ξ

ξ (A.84)

pEDt = pet
∂fEt

∂(ζtKD
t )

= petA
E
t (1− ω)(ζtK

D
t )ξ−1

(
ωHξ

t + (1− ω)(ΓEDt )ξ
) 1−ξ

ξ (A.85)

pDrDt =
(
pEDt − pfuelt ν

)
ζt (A.86)

µζt = KD
t

(
pEDt − pfuelt ν

)
µζt (1− ζt) = 0

µζt ≥ 0

pEHt = pHt (rHt − τHt ) (A.87)

pfuelt − τDt −GD(St) = −
∞∑
s=1

∆t,s(D
E
t+s +Dg

t+s)
(
GD
)′

(St+s) (A.88)

∆t,s =
s∏

s′=1

1

1− δg + rgt+s′

Dt = DE
t +Dland

t +Dg
t

Tt =Wt(D0, . . . , Dt−1)

St+1 = St − (DE
t +Dg

t )

D.8 Social planner problem versus decentralized equilibrium

Proof of proposition 4.2 First, from (A.83) and (A.85), we note that:

pEDt = Ω(Tt)
∂ft
∂Et

∂fEt
∂(ζtKD

t )
= ν

∂Yt

∂DE
t

From (A.86) it follows that:
pDrDt
ζtν

=
pEDt
ν
− pfuelt

And substituting here from the above implies:

∂Yt

∂DE
t

=
pDrDt
ζtν

+ pfuelt
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And substituting the expression for pfuelt from (A.88), we obtain:

∂Yt

∂DE
t

=
pDrDt
ζtν

+ τDt +GD(St)−
∞∑
s=1

∆t,s(D
E
t+s +Dg

t+s)
(
GD
)′

(St+s) (A.89)

Recall that in the social planner’s solution, the returns on dirty fuel are equal to (see Proposition
C.6):

∂Yt

∂DE
t

=
µSt

u′ (Ct/Lt)
+ χt +GD(St) +

pDRDt
ζtν

(A.90)

where (see Proposition C.5)

µSt
u′ (Ct/Lt)

= −
∞∑
s=1

∆t,s(G
D)′(St+s)(D

E
t+s +Dg

t+s)

Expression (A.89) is identical to (A.90) when taxes are equal to the SCC, and when rDt = RDt .
Next, we find the value of subsidies under which the solutions of the social planner’s problem

and decentralized equilibrium coincide. First, if the investment into the renewable sector continues
then µiHt = µiHt+1 = 0, and from (A.81) it follows that:

rHt+1 =
pHt
pHt+1

(1− δg + rgt+1)− (1− δH)

or
pHt+1

pHt
rHt+1 = (1− δg + rgt+1)−

pHt+1

pHt
(1− δH) (A.91)

Using (A.83), (A.84) and (A.87), we can also write that:

rHt+1 =
1

pHt+1

∂Yt+1

∂Ht+1
+ τHt+1 (A.92)

Next, we denote the return on clean investment in the social planner’s case as r̃Ht+1. Recall that in
the social planner solution (Lemma C.7):

pHt+1

pHt
r̃Ht+1 = (1 + rgt+1 − δ

g)−
pHt+1

pHt
(1− δH) +

Ht+2 − (1− δH)Ht+1

pHt
G′(Ht+1) (A.93)

and
r̃Ht+1 =

1

pHt+1

∂Yt+1

∂Ht+1
(A.94)

Comparison of (A.92) with (A.94) yields the value of subsides:

τHt+1 = rHt+1 − r̃Ht+1

But a comparison of (A.91) with (A.93), further yields that:

pHt+1

pHt

(
rHt+1 − r̃Ht+1

)
= −Ht+2 − (1− δH)Ht+1

pHt
G′(Ht+1)
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and the level of subsidies:
τHt = −(Ht+1 − (1− δH)Ht)

G′(Ht)

pHt

Finally note that it is straightforward to show that the budget constraint (A.80) is identical to the
economy’s aggregate constraint as in the social planner’s problem after substituting the expressions
for profits and returns on capital and labor. �

D.9 Discussion of the SCC with the Stringent Damage Factor.

As we mention in the text, our “stringent damage factor”, equation (13), closely approximates a
constraint that temperatures cannot exceed the parameter ς5. Here we show how the equation for
the SCC given in Proposition 4.2 parallels that setting.

By Proposition 4.2, under optimal policy, the carbon tax and SCC are equal to the sum over
time of marginal welfare effects from an extra unit of emissions: equation (14). In particular this
incorporates the marginal effect of emissions on future output, ∂Yt+m

∂Dt
, for m ≥ 1. But Yt+m =

Ω(Tt+m)f(Y g
t+m, Et+m) (equation (7)), and Tt+m =Wt+m(D0, . . . , Dt+m−1) (equation (11)). So:

∂Yt+m
∂Dt

= Ω′(Tt+m)
∂Wt+m

∂Dt
f(Y g

t+m, Et+m).

Here we unpack the marginal damage factor, Ω′(Tt+m), in the stringent case.
Write Ω(Tt+m) for the mild damage factor, given in (12), and Ω̂(Tt+m) for the stringent version,

given in (13). Recall that Ω̂(Tt+m) = Ω(Tt+m)
1+ς3(Tt+m/ς5)ς4

, where we set ς3 to be very small (ς3 = 0.001)
and ς4 to be large (ς4 = 50), while ς5 is the threshold, 2◦C. So the denominator 1+ς3 (Tt+m/ς5)ς4 ≈ 1
when Tt+m ≤ ς5. But this denominator grows rapidly for higher values of Tt+m. It follows that
there exists ε > 0 such that Ω̂(Tt+m) ≈ Ω(Tt+m) for Tt+m ≤ ς5, and Ω̂(Tt+m) ≈ 0 for Tt+m > ς5 + ε.

It is natural, then, that the mild and stringent marginal damage factors will be approximately
equal until Tt+m is just below ς5. Meanwhile the marginal stringent damage factor is approximately
zero for Tt+m > ς5 + ε. But Ω̂′(Tt+m) will have to be large and negative at some point between ς5
and ς5 + ε, to allow Ω̂(Tt+m) to move from approximating Ω(Tt+m) (which is close to 1) to being
approximately zero.

We indeed observe this when we differentiate (12) and (13) with respect to Tt+m:

Ω′(Tt+m) = −
ς1ς2T

ς2−1
t+m(

1 + ς1T
ς2
t+m

)2
Ω̂′(Tt+m) = −

ς1ς2T
ς2−1
t+m(

1 + ς1T
ς2
t+m

)2
(1 + ς3 (Tt+m/ς5)ς4)2

− ς3ς4 (Tt+m/ς5)ς4−1

ς5
(
1 + ς1T

ς2
t+m

)
(1 + ς3 (Tt+m/ς5)ς4)2

“mild effect” “threshold effect”

The marginal stringent damage factor consists of two terms. The first we call the “mild effect”. If
Tt+m ≤ ς5 then the mild effect ≈ Ω′(Tt+m); hence the name. Moreover, there exists ε1 > 0 such
that (Tt+m/ς5)ς4−1 ≈ 0 for Tt+m < ς5 − ε1. Thus the threshold effect ≈ 0 in this range, so that the
marginal stringent damage factor is approximated by the mild effect.

There also exists ε2 > 0 such that (Tt+m/ς5)ς4 is very large for all Tt+m > ς5 + ε2, implying that
both the mild and threshold effects are ≈ 0 beyond this temperature.

However, if Tt+m is sufficiently close to ς5, then the ς4 (which is large) in the numerator of the
threshold effect dominates. So the threshold effect becomes large and negative. We illustrate this
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for the parameter values of Table A.1 in Figure A.1. Note that marginal damages below 2 degrees
are non-zero, but appear close to zero in comparison with their values just above this temperature.
Thus, the contribution to the SCC from each period t + m breaks down as something close to the
DICE damage factor, plus an additional term which becomes very large when we pass the threshold
temperature ς5.

Figure A.1: The Function Ω′(T ) with ς5 = 2.

The precise depth and width of this “downward spike” are determined by our parameters ς3, ς4
and ς5, for which we do not claim empirical justification. The important feature is that the threshold
effect, and hence Ω̂′(Tt+m), depends very sensitively on Tt+m for small changes in Tt+m just above
ς5. Thus, marginal welfare damages for any given temperature change, range from their value under
the mild damage factor, up to very high values, as temperatures increase from just below ς5 to just
above.

The realized marginal welfare loses due to the threshold effect are constrained by the realized
temperature. In an optimal trajectory, they will be balanced against marginal economic gains from
emitting carbon.

So a small relaxation in the value of ς5 would have no effect if optimal temperatures never
reach this level, and would lead to an increase in welfare commensurate with the avoided cost
of keeping to the tighter constraint, if the effective constraint is in fact binding. That is, the
threshold effect’s contribution to the SCC is very similar to what we would observe from a shadow
price, corresponding to a binding constraint Tt+m ≤ ς5. So, our stringent damage factor can be
interpreted as an approximation of this scenario. That is, we can interpret the expression for the
SCC as providing, in each period, the sum of marginal damages from our “mild” damage function,
plus the shadow cost of keeping temperatures below 2◦C in every period.

To further this comparison, consider again the social planner’s problem (Section C), working
with the mild damage factor, but impose an additional constraint:

Tt ≤ ς5. (A.95)

Write µmaxt ≥ 0 for the corresponding period-t shadow price, which is complementary slack with
(A.95). Then the Lagrangian (A.41) gains the extra term

∑∞
t=0 β

tµmaxt (Tmax − Tt), so that line
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(A.47) is replaced by

∂Tt : µWt = −µBCt Ω′(Tt)ft + µmaxt . (A.96)

Thus, when we derive the SCC in the proof of Proposition C.4 we now substitute (A.96) into (A.46),
and divide through by µBCt , to obtain:

µDt
µBCt

= −
∞∑
m=1

βm
(
µBCt+m
µBCt

Ω′(Tt+m)ft+m +
µmaxt

µBCt

)
∂Wt+m

∂Dt
(A.97)

similarly to the previous version. Again, substitute in (A.61) and (A.42), into (A.97) to obtain now:

χt :=
µDt

u′(Ct/Lt)
=

µDt
µBCt

= −u′
(
Ct
Lt

)−1 ∞∑
m=1

βmu′
(
Ct+m
Lt+m

)(
∂Yt+m
∂Dt

+ µmaxt

∂Wt+m

∂Dt

)
. (A.98)

That is, the social cost of carbon (the shadow price of carbon emissions) is equal to the present
value of the marginal economic damages from these emissions in social welfare terms (the first term)
plus the marginal effect of these emissions on warming times the shadow price of the temperature
constraint (the second term). The latter shadow price is, again, equal to the avoided cost of keeping
a slightly tighter constraint. This, then, is exactly what our stringent damage factor approximates.

Moreover, when we solve numerically our social planner’s model imposing the constraint (A.95)
directly together with the mild damage factor, we find that its solution (including the SCC) is
very close to the one using the stringent damage factor without the constraint (A.95). That is,
numerically we also show that our stringent damage factor approximates the explicit constraint
well.
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