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Abstract

A new class of marked and weighted empirical processes of residuals is introduced. The
framework is general enough to accommodate both stationary and non-stationary regressions as
well as a wide class of estimation procedures with applications in misspecification testing and
robust statistics. Two applications are presented.

First, we analyze the relationship between truncated moments and linear statistical func-
tionals of residuals. In particular, we show that the asymptotic behaviour of these functionals,
expressed as integrals with respect to their empirical distribution functions, can be easily ana-
lyzed given the main theorems of the paper. In our context the integrands can be unbounded
provided that the underlying distribution meets certain moment conditions. A general first or-
der asymptotic approximation of the statistical functionals is derived and then applied to some
cases of interest.

Second, the consequences of using the standard cumulant based normality test for robust
regressions are analyzed. We show that the rescaling of the moment based statistic is case
dependent, i.e., it depends on the truncation and the estimation method being used. Hence,
using the standard least squares normalizing constants in robust regressions will lead to incorrect
inferences. However, if appropriate normalizations, which we derive, are used then the test
statistic is asymptotically chi-square.

1 Introduction

Weighted and marked empirical processes have many statistical applications. Two related types
of empirical distribution functions have been analyzed previously. On the one hand, empirical
distribution functions of residuals weighted by some function of the regressors have been studied
by, for instance, [11, 13, 14]. Applications of this approach include asymptotic theory of robust
estimators and goodness of fit tests. On the other hand, the empirical distribution functions of
regressors marked by the residuals have been analyzed by, for instance, [6, 15, 20]. Applications
of this approach include model specification checks, which rely on moment conditions between the
errors and the regressors.

We consider the regression yi = x′iβ + εi, where the regressors can be i.i.d., stationary or non-
stationary while the error term is i.i.d. with an unknown scale σ; see §2.2 for details. Our concern
is the exceedingly common research strategy of robustifying the regression, where the investigator
first estimates the parameters by some consistent and, preferably, robust estimators β̃, σ̃; then
deselects observations with large residuals ε̃i = yi−x′iβ̃; and finally re-estimates the parameters by
estimators β̂, σ̂ with residuals ε̂i = yi−x′iβ̂ for the selected observations. Properties of the updated
estimators have been analyzed by [18, 22] and more recently [9, 11, 12]. It is common to apply
standard misspecification tests at the end of the above mentioned robust regression procedure.
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†Department of Economics, University of Oxford, Nuffield College, and Programme for Economic Modelling.
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The properties of such tests are unknown. To analyze these properties we generalize the class of
weighted and marked empirical distribution functions further and consider

F̂w,mn (c) = n−1∑n
i=1w(xin)m(ε̂i/σ̂)1(ε̃i≤σ̃c), (1.1)

where w(xin) is a weight function and m(ε̂i/σ̂) is the mark, for some smooth function m. [11]
allowed polynomial marks m(εi/σ) = (εi/σ)p, without estimation error, which form the basis for
analyzing estimators. Here, we allow for marks with estimation error, which are the basis for
analyzing misspecification statistics. In doing so we generalize and improve some of the results in
[11], simplify the proofs and relax the regularity assumptions.

We note that the marked and weighted distribution function F̂w,mn (c) defines a very general
class that includes a number of special cases which are relevant in theory and in applications. In
particular, we consider two applications. First, we study linear statistical functionals of truncated
residuals

Tm,c(F̂n) =
∫ c
−∞m(u)dF̂1,1

n (u) = n−1∑n
i=1m(ε̃i/σ̃)1(ε̃i≤σ̃c).

Here, F̂n(c) = n−1
∑n

i=11(ε̃i≤σ̃c) = F̂1,1
n (c) is the empirical distribution of the scaled residuals. When

m is unbounded the asymptotic theory of Tm,c(F̂n) cannot be derived from an asymptotic theory
for F̂n in an obvious way. However, since Tm,c(F̂n) = F̂1,m

n (c), this is a marked empirical process
and an asymptotic theory follows from our results. Specifically, Tm,c(F̂n) is expanded in terms of
Tm,c(Fn).

In our second application, we consider testing for normality in robust regressions. It is common
to check normality after having eliminated outlying observations using a moment based test statis-
tic. The asymptotic properties of the moment based test after having implemented this robustifying
procedure are not known. In order to derive those properties, we express the test statistics in terms
of the weighted and marked empirical distribution function noting that the estimation errors in the
indicators and marks will now be different. In particular, we look at statistics of the form

µ̂k,c =

∑n
i=1(ε̂i/σ̂)k1(|ε̃i|≤σ̃c)∑n

i=1 1(|ε̃i|≤σ̃c)
,

for k = 3, 4. [4] suggest a related robust test using an information matrix approach. We show
that the normalizations in the moment based test for normality depend on the estimation method
being used and the outlier detection procedure. In particular, using the standard least squares
normalization constants, that is 3, 6, 24, can lead to misleading inferences. We derive the correct
normalizations for some robust estimators of interest.

The paper is organized as follows. §2 contains the main asymptotic results for marked and
weighted empirical processes of residuals. Two applications of these general results follow: linear
statistical functionals of truncated residuals are analyzed in §3 and normality tests for robust
regressions are studied in §4. All proofs are collected in the Appendix.

2 Marked and Weighted Empirical Processes

2.1 Model and Notation

We consider marked and weighted empirical processes of residuals estimated from the model

yi = β′xi + εi = µ+ α′zi + εi, (2.1)

which includes an intercept and where β = (µ, α′)′ and xi = (1, z′i)
′ are k-vectors. In the empirical

process theory we will introduce weights win that are typically derived from the regressors. The
innovations are i.i.d. with distribution function F(c) = P(εi ≤ σc) with unknown scale σ > 0.
Overall the model satisfies the following martingale structure.
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Assumption 2.1. Let Fi be a filtration so that εi−1, xi, and win are Fi−1-measurable and εi/σ is
independent of Fi−1 with distribution function F and positive density f on R with derivative ḟ.

We normalize the regressors as xin = N ′xi where the normalization matrix N is chosen so
that the normalized information

∑n
i=1 xinx

′
in has a positive limit. For example, N = n−1/2Ik for

stationary regressors, N = n−1Ik for random walk regressors, while N = diag(n−1/2, n−3/2) if
zi = i. The weights are typically chosen so that n−1

∑n
i=1win has a limit and standard examples

include 1, n1/2N ′xi or nN ′xix
′
iN .

The error of the initial regression estimator is scaled as b̃ = N−1(β̃ − β), while the rescaled
scale estimation error is ã = n1/2(σ̃ − σ). In standard situtations ã, b̃ converge in distribution, but
we allow ã, b̃ to diverge slightly in the following theory. The standarized residuals can be rewritten
using the model equation (2.1) as

ε̃i
σ̃

=
yi − x′iβ̃

σ̃
=

εi − x′iNN−1(β̃ − β)

σ + n−1/2n1/2(σ̃ − σ)
=

εi − x′inb̃
σ + n−1/2ã

.

Likewise we introduce notation b̂ = N−1(β̂ − β) and â = n1/2(σ̂ − σ) for the updated estimators
with ε̂i = εi − x′inb̂ for the selected observations.

In the asymptotic theory, Lemma A.1 in §A.1 allows us to replace the estimation errors θ̂ =
(ã, b̃, â, b̂) with deterministic values θ = (a1, b1, am, bm) varying in some set. Here the subscripts
indicate whether parameters appear in the indicator or the mark. The marked and weighted
empirical distribution of interest is then

Fw,mn (θ,c) = n−1∑n
i=1winm

(
εi − x′inbm
σ + n−1/2am

)
1(εi≤σc+n−1/2a1c+x′inb1), (2.2)

so that Fw,mn (θ̂,c) = F̂w,mn (c) is the empirical distribution function in (1.1). For later reference we
also introduce θ1 = (a1, b1) and θm = (am, bm) where θ1 and θm collect the estimation errors in the
indicator function and the marks, respectively.

The statistical analysis of Fw,mn uses martingale theory, hence, we define the compensator as
the weighted sum of conditional expectations

F
w,m
n (θ,c) = n−1∑n

i=1winEi−1{m
(

εi − x′inbm
σ + n−1/2am

)
1(εi≤σc+n−1/2a1c+x′inb1)}, (2.3)

and define the empirical process as the martingale

Fw,mn (θ,c) = n1/2{Fw,mn (θ,c)− F
w,m
n (θ,c)}. (2.4)

2.2 Asymptotic expansions

Theorem 2.1 below shows that the empirical process Fw,mn (θ,c) is asymptotically equivalent to
Fw,mn (0,c) uniformly in θ and c. As a consequence we have that Fw,mn (θ̂,c) and Fw,mn (0,c) are asymp-
totically equivalent; see Lemma A.1. The theorem also gives an asymptotic uniform linearization
of the compensator F

w,m
n (θ,c).

Assumption 2.2. Set 0 ≤ κ < η ≤ 1/4. Let m be a differentiable mark function and let m̃(u)
represent each of m(u), uṁ(u), ṁ(u). Suppose:
(i) density and marks satisfy

(a) moments:
∫∞
−∞ m̃

4(u)f(u)du <∞;

(b1) boundedness: supu∈R |u|{1 +m4(u)}f(u) <∞
(b2) boundedness: supu∈R | ∂∂u [{1 + m̃4(u)}f(u)]| <∞
(b3) boundedness: supu∈R(1 + u2)|ṁ(u)f(u)| <∞;
(c) smoothness: Let h̃(u) = {1 + m̃4(u)}f(u) so that

sup
c>0

supu≥c h̃(u)

inf0≤u≤c h̃(u)
<∞, sup

c>0

supu≤−c h̃(u)

inf−c≤u≤0 h̃(u)
<∞.
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(d) local Lipschitz: ∃ω > 0 and a function m̊(u) ≥ 0 so ∀u∗, u so that
|u∗ − u| ≤ (1 + |u|)ω then |ṁ(u∗)− ṁ(u)| ≤ |u∗ − u|m̊(u) and where∫∞
−∞(1 + |u|2)m̊(u)f(u)du <∞;

(ii) regressors: max1≤i≤n |n1/2−κN ′xi| = OP(1) for some non-stochastic nor-
malization matrix N ;

(iii) weights: E
∑n

i=1 |win|2+ω = O(n) for some ω > 0.

Theorem 2.1. Let Assumptions 2.1, 2.2 hold. Then, ∀B > 0, n→∞,

sup
|θ|≤Bn1/4−η

sup
c∈R
|Fw,mn (θ,c)− Fw,mn (0, c)| = oP(1),

sup
|θ|≤n1/4−ηB

sup
c∈R
|n1/2{Fw,mn (θ,c)− F

w,m
n (0, c)} − Bw,mn (θ, c)| = oP(1),

where Bw,mn (θ, c) = Bw,m1n (θ1, c)− Bw,mmn (θm, c) and

Bw,m1n (θ1, c) = σ−1m(c)f(c)n−1/2∑n
i=1win(n−1/2a1c+ x′inb1), (2.5)

Bw,mmn (θm, c) = σ−1n−1/2∑n
i=1win{n

−1/2amE(εi/σ)ṁ(εi/σ)1(εi≤σc) (2.6)

+ x′inbmEṁ(εi/σ)1(εi≤σc)}.

Remark 1. Theorem 2.1 generalizes [14] who had marks m(u) = 1, known scale σ, and bounded
normalized estimators so that η = 1/4. Their result essentially required 2nd moments for regressors
and weights, which is slightly weaker than for the present result. Both proofs evolve around chaining
and martingale inequalities combined with truncation of regressors and weights. The basic setup
is a locally quadratic Fi-martingale Vn =

∑n
i=1 vi with predictable quadratic variation 〈V 〉n =∑n

i=1 E(v2
i |Fi−1) and total quadratic variation [V ]n =

∑n
i=1 v

2
i . Since [14] had bounded marks they

could use the [7] inequality: for |vi| ≤ c, then

P(Vn ≥ x, 〈V 〉n ≤ y) ≤ exp[−x2/{2(y + cx)}].

With unbounded marks we will instead use the [3] inequality, refined by [5], see also [2] and embedded
in the iterated martingale inequalities in Theorems A.2, A.3: for any |vi|, then ∀x, y > 0

P(Vn ≥ x, [V ]n + 2 〈V 〉n ≤ y) ≤ exp{−3x2/(2y)}. (2.7)

The total quadratic variation [V ]n is harder to control than the predictable quadratic variation 〈V 〉n ,
so that slightly stronger conditions are needed here. Theorem 2.1 also generalizes results in [11],
where the marks are m(u) = up without estimation errors. That result required that the number of
moments grows with the dimension of the regressors, which is relaxed here.

Remark 2. Assumption 2.2(i, c) is a smoothness condition that is satisfied if {1 + m̃4(u)}f(u) is
monotone for large |u|; see [11, Remark 4.1].

Remark 3. The local Lipschitz Assumption 2.2(id) is satisfied for polynomials m(u) = up. Note
ṁ(u) = pup−1 and ṁ(u†)−ṁ(u) = p(u†−u)

∑p−2
j=0 u

j(u†)k−2−j . For |u†−u| ≤ (1+ |u|)ω and ω = 1

we can choose m̊(u) = p
∑p−2

j=0 |u|j(1 + |u|)k−2−j with integrability condition E|u|p <∞.

Remark 4. Assumption 2.2(i) is satisfied for the normal distribution with m(u) = up for any
p ∈ N since the derivatives of the normal density are bounded, tail monotone and locally Lipschitz.

Remark 5. Assumption 2.2(ii) allows a general class of regressors. For stationary regressors the
assumption is satisfied if there exists a κ0 so 1/4 > κ > κ0 > 0 and E|xi|1/κ0 < ∞, since by the
Boole and Markov inequalities

P( max
1≤i≤n

|xi| > y) = P
⋃n
i=1(|xi| > y) ≤

∑n
i=1P(|xi| > y) ≤

∑n
i=1E|xi/y|1/κ0

vanishes for y = n1/2−κ. For deterministic regressors and random walk regressors we can choose
κ = 0. See [11, Example 3.2] for details.
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Combining Theorem 2.1 and Lemma A.1 in Appendix A.1 we expand

n1/2{Fw,mn (θ̂,c)− F
w,m
n (0, c)} = Fw,mn (0, c) + Bw,mn (θ̂, c) + oP(1), (2.8)

uniformly in c. The next step is to find an asymptotic theory for the process Fw,mn + Bw,mn . Often
the process Fw,mn + Bw,mn is asymptotically Gaussian by the Central Limit Theorem even in the
presence of random walk regressors with examples following in the subsequent sections. But, the
asymptotic distribution could also involve stochastic integrals, see §1.5.4 of [9]. The tightness of
the process Fw,mn is analyzed by [14] with unit marks, m(u) = 1, while the following result applies
for polynomial marks.

Assumption 2.3. Let m(u) = up for some p ∈ N0. Suppose
(i) density satisfies: E|εi|4p+ν <∞ for some ν > 0;
(ii) weights satisfies: E

∑n
i=1 |win|4(1 + |n1/2N ′xi|) = O(n).

Theorem 2.2. ([11, Th. 4.2]) Let Assumptions 2.1, 2.3 hold. Then, ∀ε > 0,

lim
φ↓0

lim sup
n→∞

P{ sup
c,c†∈R:|F(c)−F(c†)|≤φ

|Fw,mn (θ,c†)− Fw,mn (0, c)| > ε} → 0.

3 Truncated Moments & Linear Statistical Functionals

Many test statistics can be expressed as statistical functionals of empirial processes of residuals,
say T(F̂n) where F̂n(u) = n−1

∑n
i=11(ε̃i≤σ̃c). Conditions ensuring the weak convergence of F̂n are

insufficient to describe the asymptotic theory of T(F̂n) in genereal, especially when considering
functionals of the form

Tm,c(F̂n) =
∫ c
−∞m(u)dF̂n(u) = n−1∑n

i=1m(ε̃i/σ̃)1(ε̃i≤σ̃c), (3.1)

and the integrand is unbounded. However, this statistical functional is a weighted and marked
empirical distribution function, that is, Tm,c(F̂n) = F1,m

n (θ̂, c). Theorem 2.1 expands such statistical
functionals.

Corollary 3.1. Suppose n1/2(σ̃ − σ) and N−1(β̃ − β) are OP(n1/4−η) for some η > 0. Under
Assumptions 2.1, 2.2 with that η, mark m defined from Tm,c and weights win = 1, then

n1/2{Tm,c(F̂n)− Tm,c(F)} = n1/2{Tm,c(Fn)− Tm,c(F)}+ B1,m
n (θ̂, c) + oP(1),

uniformly in c ∈ R, and where B1,m
n (θ̂, c) = B1,m

1n (θ̂, c)− B1,m
mn (θ̂, c) with

B1,m
1n (θ̂, c) =cm(c)f(c)n1/2(σ̃/σ − 1) +m(c)f(c)

∑n
i=1x

′
in(β̃ − β),

B1,m
mn (θ̂, c) =n1/2(σ̃/σ − 1)E{(ε1/σ)ṁ(ε1/σ)1(εi≤σc)}

+ σ−1∑n
i=1x

′
in(β̃ − β)E{ṁ(ε1/σ)1(εi≤σc)}.

We note that the bias term B1,1
n (θ̂, c) only depends indirectly on the regressors. In particular,

for least squares estimators we have

n1/2(σ̃/σ − 1) = 2−1n−1/2∑n
i=1{(εi/σ)2 − 1}+ oP(1), (3.2)

σ−1∑n
i=1x

′
in(β̃ − β) = n−1/2∑n

i=1(εi/σ) + oP(1), (3.3)

see Lemmas B.5, B.6 in Appendix B.
We now consider the special case m(u) = up in some detail. We focus on the results without

further attention to the regularity conditions set out in Corollary 3.1. Denote Tm,c by Tp,c, let
Tp,∞ = Tp and consider a symmetric density f for simplicity. The idea is to highlight some subtle
differences that arise when applying the statistical functional Tp,c to Fn and F̂n, respectively.
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Denote one-sided truncated moments by Tp,c(F) = E(εi/σ)p1(εi≤σc) for c ∈ R, while two-sided
truncated moments are given by

τ cp = E(εi/σ)p1(|εi|≤σc) = Tp,c(F)− Tp,−c(F) for c > 0. (3.4)

In particular, T0,c(F) = P(εi ≤ σc) for c ∈ R and τ c0 = P(|εi| ≤ σc) for c ∈ R. Denote τ∞p = τp. We
note that when F is the standard normal distribution function then, for p ∈ N0,

τ c2p+1 = 0, τ c2p = {(2p− 1)!!}P(χ2
2p+1 ≤ c2), (3.5)

where the odd factorial (2p−1)!! is one for p = 0 and
∏p
`=1(2`−1) for p ∈ N. This is proved by first

integrating up with respect to the standard normal density ϕ(u) and substituting u2 = v and then

noting Γ{(p+ 1)/2} = Γ(1/2)
∏p/2
`=1{(2`−1)/2} by the functional equation for the gamma function.

[1] have similar formulas for τ c1 , τ
c
2 . Now, inserting c =∞ in the above formula gives the moments

of the standard normal distribution: τ0 = τ2 = 1, τ4 = 3, τ6 = 15, τ8 = 105. Exploiting that the
normal density satisfies (∂/∂u){−uf(u)} = (u2 − 1)f(u) we also get

τ c2 =
∫ c
−cu

2f(u)du = τ c0 − 2cf(c). (3.6)

Example 1. The sample central moments of Fn are

T̃p(Fn) =
∫∞
−∞{u−

∫∞
−∞vdFn(v)}pdFn(u).

This is analyzed as a non-linear statistical functional of Fn by [19, p. 232f]. However, we can
also analyze this as a linear statistical functional of F̃n(c) = n−1

∑n
i=1 1(ε̃i≤σc) where ε̃i = εi − ε̄.

To do so let xi = 1 in (2.1), that is yi = µ + εi. We then get that T̃p(Fn) = Tp(F̃n), which is
a linear statistical functional in F̃n. Recall the properties of least squares estimators in (3.3) and
apply Corollary 3.1 with σ̃ = σ to get

n1/2{Tp(F̃n)− Tp(F)} = n−1/2∑n
i=1(εpi /σ

p − τp)− pτp−1n
−1/2∑n

i=1εi + oP(1).

Assuming τ1 = 0 the asymptotic variance is found to be

var = τ2p − (τp)
2 − 2pτp−1τp+1 + p2τ2

p−1τ2,

in agreement with [19, p. 233]. Serfling leaves it to the reader to check whether his condition A1

applies to his remainder term R1n. Here, this is done through Corollary 3.1 with its more primitive
conditions, which are satisfied for instance for a normal distribution.

Example 2. Standardized sample moments of F̂n. Let β̃, σ̃ be least squares estimators in
model (2.1). This includes an intercept so

∑n
i=1 ε̃i = 0. We get the standardized moments Tp(F̂n) =

n−1
∑n

i=1(ε̃i/σ̃)p, so that T1(F̂n) = 0 and T2(F̂n) = 1 while T3(F̂n) and T4(F̂n) are sample skewness
and kurtosis. Corollary 3.1 combined with (3.2), (3.3) shows that

n1/2{Tp(F̂n)− Tp(F)} = n−1/2∑n
i=1{(εi/σ)p − τp}

− pτp−1n
−1/2∑n

i=1(εi/σ)− pτp
1

2
n−1/2∑n

i=1{(εi/σ)2 − 1}+ oP(1).

The asymptotic variance, assuming τ1 = 0, is

varp = τ2p − τ2
p − 2pτp−1τp+1 + p2τ2

p−1τ2 − pτp(τp+2 − τpτ2)

+ p2τpτp−1τ3 + p2τ2
p (τ4 − τ2

2 )/4. (3.7)

In particular, in the normal case this reduces to var3 = 6 and var4 = 24.

6



4 Testing for Normality in Robust Regressions

We now apply the general theory of §2 to normality testing in robust regressions. We consider the
widely used “data-analytic strategy” described in [22]; that is, outliers are first detected using an
initial estimator and then, after eliminating them, the model is estimated by least squares on the
retained observations. The properties of such statistical procedure are unknown but can be studied
using the above general theory.

4.1 Estimators, test statistics, assumptions and notation

Suppose we have initial estimators β̃, σ̃. We then select observations where |ε̃i| ≤ σ̃c with ε̃i =
yi − x′iβ̃ and run a regression on those observations giving

β̂ = {
∑n

i=1xix
′
i1(|ε̃i|≤σ̃c)}

−1∑n
i=1xiyi1(|ε̃i|≤σ̃c).

This results in updated residuals ε̂i = yi − x′iβ̂ and a residual variance estimator of the form

σ̂2 = ς−2
c {

∑n
i=11(|ε̃i|≤σ̃c)}

−1∑n
i=1ε̂

2
i 1(|ε̃i|≤σ̃c), (4.1)

where the consistency factor is ς2
c = τ c2/τ

c
0 . Table 1 gives numerical values for ς2

c under the hypoth-
esis of normal errors without outliers. The above estimators are refered to as 1-step Huber-skip
estimators and are analyzed in [9, 10, 11, 12]. Examples include:

Example 3. The least squares estimator where σ̃c =∞.

Example 4. The robustified least squares estimator where β̃, σ̃ are full-sample least squares esti-
mators and c is a user-specified cut-off so that σ̃c = σ̃c. We will write β̂RLS for β̂.

Example 5. The least trimmed squares estimator of [17]. Let ξi(β) = |yi−x′iβ| with order statistics
ξ(i)(β) in increasing order. Let n − h be the number of trimmed observations corresponding to a
trimming proportion of (n − h)/n = P(ε2

1 ≥ σ2c2). Then the least trimmed squares estimator is
β̃LTS = arg minβ

∑h
i=1ξ

2
(i)(β). Let ξ̃i = ξi(β̃LTS). This estimator selects h observations with smallest

residuals ξ̃(i) so that the cut-off value is σ̃c = ξ̃(h). In our setup with β̃ = β̂ = β̃LTS giving residuals

ε̃i = ε̂i = yi − x′iβ̃LTS. Inserting this in (4.1) gives σ̃2
LTS = σ̃2.

We consider the moment based normality test on the robustified (truncated) sub-sample of
second stage residuals ε̂i = yi − x′iβ̂. Let s denote the estimation procedure being used and define
the conditional sample moments

µ̂sp,c =

∑n
i=1(ε̂i/σ̂)p1(|ε̃i|≤σ̃c)∑n

i=1 1(|ε̃i|≤σ̃c)
for p ∈ N. (4.2)

We then study the following truncated normality test statistics

T̂ s3,c =
n1/2µ̂s3,c

(λs6,c)
1/2

, T̂ s4,c =
n1/2(µ̂s4,c − λs3,c)

(λs24,c)
1/2

, (4.3)

where λs3,c, λ
s
6,c, λ

s
24,c are normalizing constants that depend on the selection stage through c and

the estimation method. We note that when σ̃c = ∞ there is no selection over observations and
the statistics reduce to the standard cumulant based test statistics for normality of residuals with
λOLS3,∞ = 3, λOLS6,∞ = 6 and λOLS24,∞ = 24, see Example 2. When there is selection, the normalizing
factors λs3,c, λ

s
6,c, λ

s
24,c depend on the truncated moments and certain constants entering the first

order asymptotic expansions of the estimation method being used.
We analyze the normality test when there is no contamination and normal errors. Assumption

2.2 reduces as follows, see Remark 4.
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Assumption 4.1. Let 0 ≤ κ < 1/4. Suppose
(i) εi/σ is N(0, σ2) distributed;
(ii) regressors: max1≤i≤n |n1/2−κN ′xi| = OP(1) for some non-stochastic normalization matrix N ,
where N−1 = O(n`) for some ` > 0 and where inf{n :

∑n
i=1 xix

′
i invertible} <∞ a.s.

For the least trimmed squares estimator further assumptions are needed.

Assumption 4.2. The regressors are nonrandom so that
∑n

i=1 |xi|4 = O(n) and n−1
∑n

i=1 xix
′
i

has a positive definite limit.

4.2 The robustified least squares case in Example 4

The normality test is based on the truncated empirical moments in (4.2) where β̃, σ̃ are full sample
least squares estimators and β̂, σ̂ are the corresponding 1-step Huber skip estimators with residuals
ε̃i = yi − x′iβ̃ and ε̂i = yi − x′iβ̂, respectively, while the cut-off is σ̃c = σ̃c.

The truncated normality test statistics T̂RLS3,c , T̂RLS4,c in (4.3) are computed as follows. The
asymptotic expansions will involve the vectors

zc3,i =


(εi/σ)31(|εi|≤σc)
(εi/σ)1(|εi|≤σc)

(εi/σ)

 , zc4,i =


(εi/σ)41(|εi|≤σc) − τ c4
(εi/σ)21(|εi|≤σc) − τ c2

1(|εi|≤σc) − τ c0
(εi/σ)2 − 1

 . (4.4)

For normal and hence symmetric εi these vectors are uncorrelated. The Central Limit Theorem
then shows that zc3,i, z

c
4,i are asymptotically normal and independent with variances

Ωc
3 =

 τ c6 τ c4 τ c4
τ c4 τ c2 τ c2
τ c4 τ c2 1

 , (4.5)

Ωc
4 =


τ c8 − τ c4τ c4 τ c6 − τ c2τ c4 τ c4(1− τ c0) τ c6 − τ c4
τ c6 − τ c2τ c4 τ c4 − τ c2τ c2 τ c2(1− τ c0) τ c4 − τ c2
τ c4(1− τ c0) τ c2(1− τ c0) τ c0(1− τ c0) τ c2 − τ c0
τ c6 − τ c4 τ c4 − τ c2 τ c2 − τ c0 2

 . (4.6)

We compute the vectors

ζRLS3,c = {1,−3τ c2/τ
c
0 , 2(c2 − 3τ c2/τ

c
0)cf(c)}′, (4.7)

ζRLS4,c = {1,−2τ c4/τ
c
2 , τ

c
4/τ

c
0 , (c

4 − c22τ c4/τ
c
2 + τ c4/τ

c
0)cf(c)}′, (4.8)

and define the normalizations, for s = RLS,

λs3,c = τ c4/τ
c
0 , λs6,c = ζs′3,cΩ

c
3ζ
s
3,c/(τ

c
0)2, λs24,c = ζs′4,cΩ

c
4ζ
s
4,c/(τ

c
0)2. (4.9)

Table 1 gives numerical values for λRLS3,c , λRLS6,c , λRLS24,c . We note that these normalizations depend
substantially on the choice of c.

We get the following asymptotic result.

Theorem 4.1. Let Assumptions 2.1, 4.1 hold and c0 > 0. Then, uniformly in c ≥ c0, for p = 3, 4,
we get T̂RLSp,c = TRLSp,c,n + oP(1) where

TRLSp,c,n = {(ζRLSp,c )′Ωc
p(ζ

RLS
p,c )}−1/2(ζRLSp,c )′n−1/2∑n

i=1z
c
p,i.

For c ≥ c0 then TRLS3,c,n and TRLS4,c,n converge to independent Gaussian processes with zero mean and

unit variance. In particular, for fixed c ≥ c0 then (T̂RLS3,c )2 + (T̂RLS4,c )2 is asymptotically χ2
2.
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Table 1: Normality test for robust regressions. Normalization factors under normality.
τ c0 = P(|ε1| < σc) 0.5 0.95 0.99 0.999 0.9999 0.99999 1
c 0.67 1.96 2.58 3.29 3.89 4.42 ∞
ς−1
c 2.6477 1.1480 1.0399 1.0059 1.0008 1.0001 1
λRLS3,c = λLTS3,c 0.0379 1.3501 2.2750 2.8381 2.9709 2.9954 3

λRLS6,c 0.0111 0.8865 2.4986 4.6725 5.6472 5.9250 6

λLTS6,c 0.0041 0.8313 2.4908 4.6724 5.6472 5.9250 6

λRLS24,c 0.0012 1.1211 4.5439 12.9758 19.7877 22.7983 24

λLTS24,c 0.0029 2.0489 7.6335 16.8966 21.9157 23.5276 24

Example 6. The normalizations λRLS3,c , λRLS6,c , λRLS24,c found in Theorem 4.1 are substantially differ-
ent from the traditional values 3, 6, 24. Those incorrect values are commonly applied in practice
after outlier detection. This leads to severe size distortions as we are comparing µ̂RLS3,c and µ̂RLS4,c

with N(0, 6/n) and N(3, 24/n) distributions rather than N(0, λRLS6,c /n) and N(λRLS3,c , λRLS24,c /n) distri-

butions. Then the 3rd moment test is under-sized while the 4th moment test has asymptotic size of
unity. Indeed, suppose we set c = 2.58 corresponding to a 1% trimming and let n = 100. The incor-
rect normalizations give 95% sampling regions of [−0.48, 0.48] and [2.04, 3.96], respectively, instead
of the correct [−0.30, 0.30] and [1.86, 2.69], leading to sizes of 0.24% and 13.5%, respectively. For
n = 200 and n = 400 the fourth moment test has sizes increasing to 62.0% and 98.9%, respectively.

4.3 The least trimmed squares case in Example 5

The result in this case is similar to the previous one. The main difference is technical: since order
statistics are used the proof involves empirical and quantile processes.

The truncated empirical moments in (4.2) have β̃ = β̂ as the least trimmed squares estimator
with residuals ε̃i = ε̂i = yi − x′iβ̃. The cut-off is σ̃c = ξ̃(h) which is the hth smallest order statistic

of ξ̃i = |ε̃i|. The least trimmed estimators β̃ and σ̃ were analyzed by [21] and [12], respectively.
The truncated normality test statistics T̂LTS3,c and T̂LTS4,c are computed from (4.3) where the

normalizations are expressed as follows. Recall the covariances Ωc
3, Ωc

4 in (4.6) and compute vectors

ζLTS3,c = {1, 2c3f(c)/τ c2 − 3, 0}′, (4.10)

ζLTS4,c = {1− τ c4/τ c0 ,−2τ c4/τ
c
2 , τ

c
4/τ

c
0 + 2c2τ c4/τ

c
2 − c4, 0}′, (4.11)

and the normalizations λLTS3,c , λLTS6,c , λLTS24,c from (4.9) with s = LTS. The normalizations are tabu-
lated in Table 1. We have the following result.

Theorem 4.2. Let Assumptions 2.1, 4.1, 4.2 hold and choose a fixed h/n ∈ (0, 1). Then T̂LTS3,c and

T̂LTS4,c are asymptotically independent χ2
1.

A Empirical Processes Results

We prove Theorem 2.1. The weights win may be arrays, but to show that the resulting array of
empirical processes vanishes it suffices to show this for each element. Thus, we proceed in this
appendix as if win is scalar.

A.1 The Chaining Setup

We consider processes Mn(θ̂, c) depending on estimation errors θ̂. If θ̂ is bounded in probability,
then Mn(θ̂, c) can be analyzed by studying the behaviour of Mn(θ, c) uniformly in θ ∈ Θ for a
compact Θ. This is due to the following result.
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Lemma A.1. If ∀ε > 0 a compact set Θ exists so limn→∞ P(θ̂ ∈ Θc) < ε then P{|Mn(θ̂, c)| >
ε}≤ P{supθ∈Θ |Mn(θ, c)| > ε}+ ε.

Proof of Lemma A.1: Boole’s inequality shows P(A) ≤ P(A ∩ B) + P(Bc) for events A =
{|Mn(θ̂, c)| > ε}, B = (θ̂ ∈ Θ). The probability P(A ∩ B) is bounded by considering the largest
possible outcome of |Mn(θ, c)| for θ ∈ Θ. The probability P(Bc) vanishes by assumption. �

We generalize the norm on R developed in [11] in order to cover R with a finite number of
chaining points ck. The norm evolves around fourth power of the variables m(εi/σ)1(εi/σ≤c) for
c ∈ R, where εi/σ has density f and m is a (mark) function that will be chosen in various ways
throughout the proof of Theorem 2.1. We define

Hm(c) =
∫ c
−∞{1 + |m(u)|4}f(u)du = E{1 +m4(εi/σ)}1(εi≤σc), (A.1)

with derivative Ḣm(c) = {1 + |m(c)|4}f(c). The function Hm is increasing by construction and
bounded by Assumption 2.2(ia). Let

Hm = Hm(∞) = E[{1 +m4(εi/σ)}] =
∫∞
−∞{1 +m4(u)}f(u)du <∞.

The inequality m2q ≤ 1 +m4 for 0 ≤ q ≤ 2 implies that, for c ≤ c†,

E{|m(εi/σ)|1(c<εi/σ≤c†)}
2q ≤ E{1 +m4(εi/σ)}1(c<εi/σ≤c†) = Hm(c†)− Hm(c). (A.2)

We denote Hm(c†)− Hm(c) the Hm-distance between c and c†.
For the chaining, partition the range of Hm(c) into K intervals of equal size Hm/K. We choose

K = int(n1/2/δ) for some δ > 0, and, accordingly, partition the support into K intervals defined
by the grid points

−∞ = c0 < c1 < · · · < cK−1 < cK =∞, (A.3)

so that Hm(ck)− Hm(ck−1) = Hm/K = O(δn−1/2).
A chaining argument is used to show supc∈R |Mn(θ, c)| is small. That is

sup
c∈R
|Mn(θ, c)| ≤ max

1≤k≤K
|Mn(θ, ck)|+ max

1≤k≤K
sup

c:ck−1<c≤ck
|Mn(θ, c)−Mn(θ, ck)|. (A.4)

We refer to these two terms as the discrete points and the oscillation terms.

A.2 Iterated exponential martingale inequalities

In the chaining arguments we investigate the tail probability for the maximum of a certain family of
martingales. We now modify the iterated martingale inequality in [11, Th. 5.1]. The new inequality
is sharper as the proof uses the Delyon inequality (2.7) instead of the Bercu and Touati inequality.
Only a single iteration is presented as this suffices with the subsequent proofs. However, the main
difference is the intersection with the set bounding the weights inspired by the [14, Lemma 2.3]
version of the Freedman [7] inequality.

Theorem A.2. For 1 ≤ ` ≤ L, let w`,i and y`,i+1 be Fi-adapted with Ez4
`i < ∞. Let Dr =

max1≤`≤L
∑n

i=1Ei−1z
2r

`i for r = 1, 2. Then, for all κw,κ0,κ1,κ2 > 0 and for
Dn = (max1≤`≤L max1≤i≤n |w`i| ≤ κw),

P{ max
1≤`≤L

|
∑n

i=1w`i(z`i − Ei−1z`i)| > κ0 ∩ Dn)}

≤ κ2
w

κ1
ED1 +

κ4
wL

3κ2
ED2 + 2L{exp(− κ2

0

6κ1
) + exp(− κ2

1

6κ2
)}.
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Proof of Theorem A.2: Let Pn be the probability of interest.
1. Truncation. Define w̄`i = w`i1(|w`i|≤κw) so that w`i = w̄`i onDn. Let A` =

∑n
i=1w̄`i(z`i−Ei−1z`i)

and A = (max1≤`≤L |A`| > κ0) so that we get Pn = P(A ∩Dn) which is bounded by Pn ≤ P(A).
2. Martingale A` and quadratic variation. The weight w̄`i is Fi−1-adapted and bounded, so that
A` is a martingale with bounded weights and its sum of predictable and total quadratic variation is
B` =

∑n
i=1w̄

2
`iB`i where B`i = (z`i−Ei−1z`i)

2 + 2Ei−1(z`i−Ei−1z`i)
2. This requires that Ez2

`i <∞,
which is assumed. Let B = (max1≤`≤LB` ≤ 9κ1) and note the inequality

P(A) = P(A ∩ B) + P(A ∩ Bc) ≤ P(A ∩ B) + P(Bc). (A.5)

3. Bounding P(A ∩ B). Let A` = (|A`| > κ0) and B` = (B` ≤ 9κ1). Apply Boole’s inequality
noting that A = ∪L`=1A` and then that B ⊂ B` to get

P(A ∩ B) ≤
∑L

`=1P(A` ∩ B) ≤
∑L

`=1P(A` ∩ B`).

The martingale exponential inequality in (2.7) shows

P(A ∩ B) ≤
∑L

`=12 exp{−3κ2
0/(18κ1)} =

∑L
`=12 exp{−κ2

0/(6κ1)}.

4. Martingale decomposition of B`. Ignore the indices on B`i, Ei−1 and z`i, and apply the inequality
(z − Ez)2 ≤ 2(z2 + E2z) along with E2z ≤ Ez2 and E(z − Ez)2 ≤ Ez2 to get that B = (z − Ez)2 +
2E(z − Ez)2 satisfies the inequality B ≤ 2z2 + 5Ez2 = 2(z2 − Ez2) + 7Ez2. Thus,

P(Bc) ≤ P[ max
1≤`≤L

∑n
i=1κ

2
w{2(z2

`i − Ei−1z
2
`i) + 7Ei−1z

2
`i} > 9κ1].

Let Ã` = κ2
w

∑n
i=1(z2

`i − Ei−1z
2
`i) and Ã = (max1≤`≤L |Ã`| > κ1).

Further, let C̃ = (κ2
w max1≤`≤L

∑n
i=1Ei−1z

2
`i > κ1). Noting that P(2x + 7y > 9κ) ≤ P{(2x >

2κ) ∪ (7y > 7κ)} we get the further bound P(Bc) ≤ P(Ã) + P(C̃).
5. Bounding P(C̃). Note w̄2

`i ≤ κw and apply the Markov inequality to get

P(C̃) ≤ κ−1
1 κ2

wE max
1≤`≤L

∑n
i=1Ei−1z

2
`,i = κ−1

1 κ2
wED1.

6. Martingale Ã` and quadratic variation. The martingale Ã` has quadratic variation B̃` =
κ4
w

∑n
i=1B̃`i where B̃`i = (z2

`i − Ei−1z
2
`i)

2 + 2Ei−1(z2
`i − Ei−1z

2
`i)

2, requiring Ez4
`i < ∞. Thus, the

triangle inequality and (A.5) with Ã and B̃ = (max1≤`≤L B̃` ≤ 9κ2) give P(Ã) ≤ P(Ã∩ B̃) + P(B̃c).
7. Bounding P(Ã ∩ B̃). Proceed as in item 3 to get the bound

P(Ã ∩ B̃) ≤ 2L exp{−(κ1/κ
2
w)2/(6κ2/κ

4
w)} = 2L exp{−κ2

1/(6κ2)}.

8. Bounding P(B̃c). By Boole’s inequality

P(B̃c) = P
⋃L
`=1(κ4

wB̃` > 9κ2) ≤ L max
1≤`≤L

P(κ4
wB̃` > 9κ2).

The Markov inequality and EB̃`i = 3E(z2
`i − Ei−1z

2
`i)

2 ≤ 3Ez4
`i give

P(B̃c) ≤ κ4
wL

9κ2
max

1≤`≤L
EB̃` ≤

3κ4
wL

9κ2
max

1≤`≤L
E
∑n

i=1z
4
`i.

Use iterated expectations and max1≤`≤L Ex` ≤ E max1≤`≤L x` to get

P(B̃c) ≤ κ4
wL

3κ2
E max

1≤`≤L

∑n
i=1Ei−1z

4
`,i =

κ4
wL

3κ2
ED2.

9. Combine the bounds P(A ∩ B), P(C̃), P(Ã ∩ B̃), P(B̃c) in items 3,5,7,8. �

The next result is a corollary to Theorem A.2 and modifies [11, Th. 5.2].
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Theorem A.3. For 1 ≤ ` ≤ L, let z̃`i, w̃i+1,n be Fi-adapted so Ez̃4
`,i <∞.

Let Dr = max1≤`≤L
∑n

i=1Ei−1z̃
2r

`i for r = 1, 2. Suppose, ∃ς ≥ 0, λ > 0 so that L = O(nλ) and
EDr = O(nς) for r = 1, 2. Then, ∀υ > 0 so that

(i) ς < 2υ, (ii) ς + λ < 4υ
it holds, ∀κ̃ ≥ 0, ∀γ > 0 and D̃n = (max1≤i≤n |w̃in| ≤ nκ̃), that

lim
n→∞

P{ max
1≤`≤L

|
∑n

i=1w̃in(z̃`i − Ei−1z̃`i)| > γnυ+κ̃ ∩ D̃n} = 0.

Proof of Theorem A.3: Apply Theorem A.2, for a fixed n, while

κ0 = γnυ+κ̃, κ1 =
(γnυ+κ̃)2

7λ log n
, κ2 =

(γnυ+κ̃)4

(7λ log n)3
, κw = nκ̃

for any γ > 0 and κ̃ ≥ 0 so that κ2
0/κ1 = κ2

1/κ2 = 7λ log n and exploit conditions (i, ii) to see that
the probability of interest for the particular coordinate of n1/2N ′xi satisfies

Pn=O(
n2κ̃

n2υ+2κ̃/ log n
nς +

n4κ̃nλ

n4υ+4κ̃/ log3 n
nς + nλn−7λ/6) = o(1),

as desired since ς < 2υ and ς + λ < 4υ while λ > 0. �

A.3 Preliminary Lemmas

Lemma A.4. (Jiao, Nielsen, [8]): If |c̃− c| ≤ |Ac+B| and |A| ≤ 1/2 then |c| ≤ 2(|c̃|+ |B|) and
(Ac+B)2 ≤ 16(A2c̃2 +B2).

The next result generalises [8, Lemma 2].

Lemma A.5. Suppose Assumption 2.2(ib3) holds. Define the function H(a, b, c) = Ei−1{(1 +
|εi/σ|)|ṁ(εi/σ)|{1(εi≤σc+n−1/2ac/σ+x′inb)

− 1(εi≤σc)}|}. Then, ∀B > 0, ∃n0, C > 0, ∀n > n0 so that

sup
|a|,|b|≤n1/4−ηB

sup
c∈R
H(a, b, c) ≤ Cn−1/4−η(1 + n1/2|xin|).

Proof of Lemma A.5. Apply the mean value theorem at the point c to get H =|cn−1/2a/σ +
x′inb|J(c̃) where J(c) = (1 + |c|)|ṁ(c)|f(c) while |c̃ − c| ≤ |σ−1n−1/2ac + x′inb|. Bound H ≤
(|σ−1n−1/2a||c|+ |x′inb|)J(c) using the triangle inequality. Notice that there exists an n0, so that for
any n > n0 then |n−1/2a/σ| ≤ 1/2 uniformly in |a| ≤ n1/4−ηB. Hence, for n > n0, the first inequal-
ity in Lemma A.4 shows |c| ≤ 2(|c̃| + |x′inb|). Combine the bounds to get H ≤ {2|n−1/2a/σ||c̃| +
(1 + 2|n−1/2a/σ|)|x′inb|}J(c̃). Now, note that |a|, |b| ≤ Bn1/4−η while supc∈R(1 + |c|)J(c) < ∞ by
assumption. �

We now bound differences of Ḣm over grid points. The result generalizes Johansen and Nielsen
(2016a, Lemma B.1) with a simplied proof.

Lemma A.6. Apply Assumption 2.2(ia, ib2, ic) with m̃ = m only. Then

max
1≤k≤K

|Ḣm(ck)− Ḣm(ck−1)| = O(K−1/2).

Proof of Lemma A.6: 1. Definitions. Introduce the bounding functions

Ḣ(c) =

{
inf0≤d≤c Ḣm(d) for c ≥ 0,

infc≤d≤0 Ḣm(d) for c ≤ 0,
Ḣ(c)=

{
sup0≤c≤d Ḣm(d) for c ≥ 0,

supd≤c≤0 Ḣm(d) for c ≤ 0.

The functions Ḣ(c) and Ḣ(c) are monotonic on R+ and R−. Assumption 2.2(ic), implies ∃CH > 0,

∀c ∈ R then Ḣ(c) ≤ CHḢ(c) so that

C−1
H Ḣ(c) ≤ Ḣ(c) ≤ Ḣm(c) ≤ Ḣ(c) ≤ CHḢ(c). (A.6)
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2. Bounding Ḣk = Ḣm(ck) − Ḣm(ck−1). We prove Ḣk = O(K−1/2) uniformly in k. Condition (i)
shows Ḣ is continuous and integrable. Thus, Ḣ vanishes for large |c| and for large K there exist
c− ≤ 0 ≤ c+ so that

Ḣm(c−) = Ḣm(c+) = Hm/K1/2. (A.7)

We consider 5 cases depending on the location of ck, ck−1 relative to c+, c−.
2.1. When c− ≤ ck−1 ≤ ck ≤ c+. The mean value theorem gives, for an intermediate point c̃k, Ḣk =
Ḣm(ck)− Ḣm(ck−1) = (ck − ck−1)Ḧm(c̃k). Since |Ḧ| is uniformly bounded by Assumption 2.2(ib2),
then |Ḣk| ≤ C(ck − ck−1) for some constant C, and it suffices to show (ck − ck−1) = O(K−1/2)
uniformly in k. Note that Hm <∞ by Assumption 2.2(ia), while Hm(ck)−Hm(ck−1) = Hm/K by
construction. The mean value theorem gives, for an intermediate point c∗ that Hm(ck)−Hm(ck−1) =
(ck − ck−1)Ḣm(c∗). The ordering (A.6) shows Ḣm(·) ≥ Ḣ(·) so that ck − ck−1 ≤ (Hm/K)/Ḣ(c∗).

We now argue that Ḣ(c∗) ≥ C−1
H Hm/K1/2. First, for c∗ ≥ 0 and noting c∗ ≤ ck ≤ c+, the

monotonicity of Ḣ gives Ḣ(c∗) ≥ Ḣ(c+). The ordering in (A.6) gives Ḣ(c+) ≥ C−1
H Ḣm(c+) while

Ḣm(c+) = Hm/K1/2 by the construction (A.7). Similarly, for c∗ ≤ 0 and noting c− ≤ ck−1 ≤ c∗ we
get Ḣ(c∗) ≥ Ḣ(c−) where Ḣ(c−) ≥ C−1

H Ḣm(c−) while Ḣm(c−) = Hm/K1/2.

Combining the inequalities ck− ck−1 ≤ (Hm/K)/{Ḣ(c∗)} and Ḣ(c∗) ≥ C−1
H Hm/K1/2 gives that

ck − ck−1 ≤ (Hm/K)/{C−1
H Hm/K1/2} = CH/K

1/2 uniformly in k. Thus, |Ḣk| ≤ CCH/K1/2.

2.2. When c+ ≤ ck−1 ≤ ck use the triangle inequality and then the bound (A.6) to get |Ḣk| ≤
Ḣm(ck) + Ḣm(ck−1) ≤ Ḣ(ck) + Ḣ(ck−1). Noting c+ ≤ ck−1 ≤ ck, the monotonicity of Ḣ, the ordering

(A.6) and the construction (A.7) give |Ḣk| ≤ 2Ḣ(c+) ≤ 2CHḢm(c+) = 2CHH
m/K1/2.

2.3. When ck−1 ≤ ck ≤ c− follow item 2.2 using c− instead of c+.
2.4. When ck−1 ≤ c+ ≤ ck. Recall Ḣk = Ḣm(ck) − Ḣm(ck−1). Add and subtract Ḣm(c+) to Ḣk
and apply the triangle inequality to bound |Ḣk| ≤ |Ḣm(ck) − Ḣm(c+)| + |Ḣm(c+) − Ḣm(ck−1)|.
The first term involves the points ck ≥ c+ while the second term involves the points ck−1 ≤ c+.
Thus, modifying the arguments in items 2.2, 2.1, respectively, gives the further bound |Ḣk| ≤
2CHH

m/K1/2 + CCH/K
1/2 = O(K−1/2).

2.5. When ck−1 ≤ c− ≤ ck follow item 2.4, using at c− instead of c+. �

A.4 Chaining Lemmas without estimation error

We present a maximal inequality for sums of zi(c) = winm(εi/σ)1(εi≤σc) without estimation error.
The first two lemmas analyze the discrete points term and the oscillation term. The third lemma
combines the two results.

Lemma A.7. Discrete points term. Apply Assumptions 2.1, 2.2(ia, ii, iii) with m̃ = m,
ω = 0 only. Apply the chaining setup in §A.1 for some δ > 0. Let d = 0, 1 and κ ≥ 0. Let
zki = win(n1/2xin)dm(εi/σ)1(εi≤σck). Then, ∀ψ > 0, we get max1≤k≤K |

∑n
i=1(zki − Ei−1zki)| =

oP(n3/4+dκ+ψ).

Proof of Lemma A.7: 1. Truncation. For some Cx > 0, ψ > 0, let

Cn = ( max
1≤i≤n

|n1/2xin| ≤ Cxnκ), Dn = ( max
1≤i≤n

|win| ≤ n1/2+ψ). (A.8)

By Assumption 2.2(ii) ∀ε > 0 ∃Cx, n0 > 0: P(Ccn) < ε for n > n0 and P(Dcn) vanishes since
Assumption 2.2(iii) and Boole and Markov inequalities imply

P(Dcn) = P
⋃n
i=1(|win| > nα) ≤ n−α/α0

∑n
i=1E|win|α = o(1). (A.9)

Thus, it suffices to show the result on Cn ∩ Dn. We note that on Cn ∩ Dn and for d = 0, 1 then
max1≤i≤n |n1/2xin|d|win|1/2 ≤ nκ̃ with κ̃ = dκ+ 1/4 + ψ/2.
2. Apply Theorem A.3 with ` = k and L = K = O(nλ) so λ = 1/2; let υ = 1/2+ψ/2 and κ̃ as above
so that υ+κ̃ = 3/4+dκ+ψ; choose z̃`i = |win|−1/2winm(εi/σ)1(εi≤σck) and w̃in = |win|1/2(n1/2xin)d
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so that w̃inz̃`i = zki and D̃n = (max1≤i≤n |w̃in| ≤ nκ̃) with D̃cn ⊂ Ccn ∪ Dcn; while ς = 1. We check
the conditions of Theorem A.3.
2.1. Condition Ez̃4

`i < ∞ holds since E(z̃4
`i) = E|win|2E|m(εi/σ)|4 < ∞ by independence and

Assumption 2.2(ia, ii).
2.2. Condition EDq = O(nς) for 1 ≤ q ≤ 2. The bound (A.2) and Assumption 2.2(ia) gives, for
q = 1, 2, that, Ei−1{|m(εi/σ)|2q1(εi≤σck)} ≤ Hm(ck) ≤ Hm < ∞. As a consequence Ei−1z̃

2q

`i =

|win|2
q−1

Ei−1{m2q(εi/σ)1(εi≤σck)} is bounded by Ei−1z̃
2q

`i ≤ |win|2
q−1
Hm, uniformly in k, so that

EDq = E max1≤k≤K
∑n

i=1Ei−1z̃
2q

ki is bounded by EDq ≤ HmE
∑n

i=1|win|2
q−1

, which is O(n) = O(nς)
by Assumption 2.2(ii).
2.3. Conditions (i), (ii): ς = 1 < 2υ = 1 + ψ and ς + λ = 1 + 1/2 < 4υ. �

Lemma A.8. Oscillation term. Apply Assumptions 2.1, 2.2(ia, ii, iii) with m̃ = m only.
Apply the chaining setup in §A.1 for some δ > 0. Let d = 0, 1 while κ ≥ 0. Define zi(c, ck) =
win(n1/2xin)dm(εi/σ)1(c<εi/σ≤ck) for ck−1 < c ≤ ck. Then

max
1≤k≤K

sup
c:ck−1<c≤ck

|
∑n

i=1{zi(c, ck)− Ei−1zi(c, ck)}| = oP(n1/2+dκ).

Proof of Lemma A.8: 1. Truncation. By Assumption 2.2(ii, iii) we can choose Cn as in (A.8)
and Dn = (max1≤i≤n |win| ≤ n1/2−ω/5) for ω > 0 given in Assumption 2.2(iii), so that P(Ccn ∪ Dcn)
vanishes. Thus, it suffices to show the result on Cn ∩ Dn.
2. A first bound. Let Mnkc =

∑n
i=1{zi(c, ck)− Ei−1zi(c, ck)}. Note

|zi(c, ck)| ≤ zki = |win||n1/2xin|d|m(εi/σ)|1(ck−1<εi/σ≤ck), (A.10)

for ck−1 ≤ c ≤ ck. Thus, |Mnkc| ≤ Mnk =
∑n

i=1(zki + Ei−1zki) uniformly in c. Decompose
Mnk = M̃nk+2M̄nk where M̃nk =

∑n
i=1(zki−Ei−1zki) and M̄nk =

∑n
i=1 Ei−1zki. Thus, it suffices

to show that max1≤k≤K |M̃nk| and max1≤k≤K M̄nk are of the desired order.
3. The compensator is maxk M̄nk = oP(n1/2+dκ). Since P(Ccn)→ 0 it suffices that 1Cn maxk M̄nk =
oP(n1/2+dκ). Apply the bound (A.2) and the zki expression in (A.10) to bound
Ei−1zki ≤ |win||n1/2xin|d{Hm(ck)− Hm(ck−1)}. The chaining setup in §A.1 and Assumption 2.2(i)
give Hm(ck) − Hm(ck−1) = Hm/K = δO(n−1/2) so that Ei−1zki = |win||n1/2xin|dδO(n−1/2). By
Assumption 2.2(iii) then E

∑n
i=1|win|1Cn ≤ E

∑n
i=1|win| = O(n), so that

E1Cn max
k
M̄nk = E1Cn max

1≤k≤K

∑n
i=1Ei−1zki ≤ δO(ndκ−1/2)E

∑n
i=1|win|= δO(n1/2+dκ). (A.11)

The Markov inequality gives P(1Cn maxk n
−1/2−dκM̄nk > ε) ≤ O(1)δ/ε for all δ, ε > 0. For any

ε > 0 we can choose δ small. The desired bound follows.
4. The martingale is max1≤k≤K |M̃nk| = oP(n1/2). Use Theorem A.3 while truncating to Cn∩Dn. In
Theorem A.3 let ` = k and L = K = O(nλ) with λ = 1/2; with υ = 1/4+ω/10 and κ̃ = 1/4+dκ−
ω/10 so that υ+ κ̃ = 1/2+dκ; with w̃in = |win|1/2|n1/2xin|d and z̃`i = |win|−1/2winm(εi/σ)1(εi≤σck)

so that w̃inz̃`i = zki; and with ς = 1/2. We check the Lemma A.3 conditions .
4.1. Condition E(z̃4

`i) < ∞ holds by Assumption 2.2(i), (iii), see also proof of Lemma A.7, item
2.1.
4.2. Condition EDq = O(nς) for q = 1, 2. Note Dq = max1≤k≤K

∑n
i=1Ei−1z̃

2q

ki so that Dq =

max1≤k≤K
∑n

i=1Ei−1|win|2
q−1
m2q(εi/σ)1(εi≤σck)= δO(n1/2) as in (A.11).

4.3. Conditions (i), (ii): ς = 1/2 < 2υ = 1/2 +ω/5 and ς + λ = 1/2 + 1/2 = 1 < 4υ = 1 + 2ω/5. �

Lemma A.9. Maximal inequality. Let d = 0, 1 while κ ≥ 0.
Define zi(c) = win(n1/2xin)dm(εi/σ)1(εi≤σc). Apply Assumptions 2.1, 2.2(ia, ii, iii) with m̃ = m

only. Then supc∈R |
∑n

i=1{zi(c)− Ei−1zi(c)}| = oP(n3/4+dκ+ω).

Proof of Lemma A.9: We prove this result by chaining over c. For any δ > 0 consider the
distance function Hm defined in (A.1) and K = int(n1/2/δ) discrete points grid points ck chosen in
§A.1. Apply then the chaining inequality (A.4). Lemmas A.7 and A.8 analyze the discrete points
term and the oscillation term, respectively. �
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A.5 Chaining Lemmas with estimation error

Two maximal inequalities are presented. The first result is concerned with additive estimation
error. It replaces the polynomial marks (εi/σ)p in [11, Theorem 4.1] by a general mark function
m(εi/σ) while improving the proof of that result.

Lemma A.10. Apply Assumptions 2.1, 2.2(ia, ib2, ic, ii, iii) with m̃ = m only. Let 0 ≤ κ < η ≤
1/4. Consider the distance function Hm(c) in (A.1) and its derivative Ḣm(c) = {1 + m4(c)}f(c).
Let d = 0, 1 and zi(b, c) = win(n1/2N ′xi)

dm(εi/σ){1(εi≤σc+x′inb) − 1(εi≤σc)}. Then

sup
|b|≤Bn1/4−η

sup
c∈R
|
∑n

i=1{zi(b, c)− Ei−1zi(b, c)}| = oP(n1/2+dκ).

Proof of Lemma A.10: 1. Notation. Let Mn(b, c) =
∑n

i=1{zi(b, c) − Ei−1zi(b, c)}. We want to
show Mn(b, c) = oP(n1/2) uniformly in b, c. Let ck be the nearest right grid point to c. We rewrite

zi(b, c) by adding and subtracting 1(εi≤σck) to get zi(b, c) = z†i (b, c, ck)− z
†
i (0, c, ck), where

z†i (b, c, ck) = win(n1/2N ′xi)
dm(εi/σ){1(εi≤σc+x′inb) − 1(εi≤σck)}.

Hence, we have Mn(b, c) = M †n(b, c, ck)−M †n(0, c, ck) with

M †n(b, c, ck) =
∑n

i=1{z
†
i (b, c, ck)− Ei−1z

†
i (b, c, ck)}.

Thus, Mn(b, c) = oP(n1/2) uniformly in b, c if

sup
|b|≤Bn1/4−η

max
1≤k≤K

sup
ck−1≤c≤ck

|M †n(b, c, ck)|, max
1≤k≤K

sup
ck−1≤c≤ck

|M †n(0, c, ck)|.

are both oP(n1/2+dκ). The second term was analyzed in Lemma A.8. It is also bounded by the first

term, so it suffices to show that M †n(b, c, ck) = oP(n1/2).
2. Truncating regressors and martingale decomposition. Following (A.8) then Assumption 2.2(ii)
shows ∀ε > 0 ∃Cx, n0 > 0 so that the sets

Cn = ( max
1≤i≤n

|n1/2xin| ≤ Cxnκ), Cin = (|n1/2xin| ≤ Cxnκ), (A.12)

satisfy P(Ccn) < ε for n > n0, while Cn ⊆ Cin and Cin is Fi−1-adapted. Thus, n−1/2|M †n(b, c, ck)|
vanishes if n−1/2|M †n(b, c, ck)|1Cn vanishes. By the triangle inequality and Cn ⊆ Cin we get

|M †n(b, c, ck)|1Cn ≤
∑n

i=1{|z
†
i (b, c, ck)1Cin |+ Ei−1|z†i (b, c, ck)1Cin |}.

We bound z†i (b, c, ck)1Cin . First, recalling the bound to b, we get, on Cin,

|x′inb| ≤ |b||xin| ≤ Bn1/4−ηCxn
κ−1/2 = BCxn

κ−η−1/4 ≤ K−1/2,

where the last inequality holds for large n since η > κ while K = int(n1/2/δ) for fixed δ. Since

ck−1 < c ≤ ck we can now bound the indicator functions in the summands z†i (b, c, ck), on Cin,

|1(εi≤σc+x′inb) − 1(εi≤σck)| ≤ 1(εi≤σck+K−1/2) − 1(εi≤σck−1−K−1/2).

Exploiting the truncation on Cin and the above bounds we get, for d = 0, 1 that
0 ≤ |z†i (b, c, ck)|1Cin ≤ z

‡
i (ck, ck−1) uniformly in b, c, where

z‡i (ck, ck−1) = Cdxn
dκ|win||m(εi/σ)|{1(εi≤σck+K−1/2) − 1(εi≤σck−1−K−1/2)}.

Thus, we can bound

|M †n(b, c, ck)|1Cn ≤M ‡n(ck, ck−1) =
∑n

i=1{z
‡
i (ck, ck−1) + Ei−1z

‡
i (ck, ck−1)}.
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Now, M ‡n has martingale decomposition M ‡n = M̃ ‡n + 2M̄ ‡n where

M̃ ‡n(ck, ck−1) =
∑n

i=1{z
‡
i (ck, ck−1)− Ei−1z

‡
i (ck, ck−1)},

M̄ ‡n(ck, ck−1) =
∑n

i=1Ei−1z
‡
i (ck, ck−1).

3. The compensator is maxk M̄
‡
n(ck, ck−1) = oP(n1/2). To see this define Hk = Hm(ck + K−1/2) −

Hm(ck−1 −K−1/2), so that the bound (A.2) implies

max1≤k≤K Ei−1z
‡
i (ck, ck−1) ≤ Cdxndκ|win|max1≤k≤K Hk. The mean value theorem gives, for c∗k, c

∗
k−1

so |c∗k − ck|, |c∗k−1 − ck−1|) ≤ 2K−1/2 that

Hm(ck +K−1/2) = Hm(ck) +K−1/2Ḣm(ck) + (K−1/2)Ḧm(c∗k),

Hm(ck−1 −K−1/2) = Hm(ck−1) +K−1/2Ḣm(ck−1) + (K−1/2)Ḧm(c∗k−1).

Taking difference and using the triangle inequality

|Hk| = |Hm(ck) − Hm(ck−1)| + K−1/2|Ḣm(ck) − Ḣm(ck−1)| + (K−1/2)|Ḧm(c∗k) − Ḧm(c∗k−1)|.

The first term is H/K = O(K−1) by construction. The second term is O(K−1) since |Ḣm(ck) −
Ḣm(ck−1)| = O(K−1/2) by Lemma A.6 and its assumptions are satisfied by Assumption 2.2
(ia, ib2, ic). The third term is O(K−1) since Ḧm(.) is uniformly bounded by Assumption 2.2(ib2).
Hence, |Hk| = O(K−1) so that

max
1≤k≤K

Ei−1z
‡
i (ck, ck−1) ≤ ndκ|win|O(K−1) = |win|δO(ndκ−1/2). (A.13)

Thus, we get uniformly in k that M̄ ‡n(ck, ck−1) =
∑n

i=1|win|δO(ndκ−1/2). Since
∑n

i=1|win| = OP(n)

by Assumption 2.2(iii) and the Markov inequality we get M̄ ‡n(ck, ck−1) = δOP(n1/2+dκ). Since δ > 0

can be chosen arbitrarily small, then M̄ ‡n = oP(n1/2+dκ).

4. The martingale is maxk M̃
‡
n(ck, ck−1) = oP(n1/2+dκ). It suffices to show the result on Dn =

(max1≤i≤n |win| ≤ n1/2−ω/5) since P(Dcn) vanishes by Assumption 2.2(ii), see (A.9). Apply Lemma
A.3 with ` = k and L = K = O(n1/2/δ) so λ = 1/2; let υ = 1/4 +ω/10, κ = 1/4−ω/10 and ς = 1.

Choose w̃in = Cdxn
dκ|win|1/2 and z̃`i = |win|−1/2z‡i (ck, ck−1) so that

z̃`i = |win|−1/2|win||m(εi/σ)|{1(εi≤σck+K−1/2) − 1(εi≤σck−1−K−1/2)},

so that w̃inz̃`i = z‡i (ck, ck−1). We check the conditions of Lemma A.3.
Condition Ez̃4

`i <∞ holds by Assumption 2.2(ia, ii), see also proof of Lemma A.7, item 2.1.
Condition EDq = O(nς) for q = 1, 2. Analyze Dq = max1≤k≤K

∑n
i=1Ei−1z̃

2q

`i . Proceed as in (A.13)
to get Dq =

∑n
i=1|win|2δO(n−1/2) for q = 1, 2 so that EDq = δOP(n1/2) by Assumption 2.2(ii).

Conditions (i), (ii): ς = 1/2 < 2υ = 1/2 + ω/5 and ς + λ = 1/2 + 1/2 = 1 < 4υ = 1 + 2ω/5. �

The next result concerns the scale estimation error. It generalizes [8, Theorem 5] and uses a
bivariate chaining argument in the proof.

Lemma A.11. Apply Assumptions 2.1, 2.2(ia, ib1, iii) with m̃ = m only.
Let zi(a, c) = winm(εi/σ){1(εi≤σc+n−1/2ac) − 1(εi≤σc)}. Then, ∀η > 0,

sup
|a|≤Bn1/4−η

sup
c∈R
|
∑n

i=1{zi(a, c)− Ei−1zi(a, c)}| = oP(n1/2).

Proof of Lemma A.11: Let zi(c
∗, c) = zi(a, c) and c∗ = c+ n−1/2ac/σ so

zi(c
∗, c) = winm(εi/σ){1(εi≤σc∗) − 1(εi≤σc)}, (A.14)
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and the object of interest is the martingaleMn(c∗, c) =
∑n

i=1{zi(c∗, c)−Ei−1zi(c
∗, c)}. Let ck∗ and

ck be the nearest right grid points to c∗ and c, respectively, and decompose

Mn(c∗, c) =Mn(c∗, ck∗) +Mn(ck∗ , ck) +Mn(ck, c).

We show that each term is oP(n1/2) uniformly in a, c.
1. The oscillation terms Mn(c∗, ck∗) and Mn(ck, c) are oP(n1/2) uniformly in a, c by Lemma A.8
with d = 0 using Assumption 2.2 (ia, iii).
2. The discrete points term Mn(ck∗ , ck) is oP(n1/2) uniformly in a, c.
2.1. Distance between ck∗ , ck. Let H =|Hm(ck)− Hm(ck∗)|. Note first that

H ≤ |Hm(c)− Hm(c∗)|+ {Hm(ck)− Hm(ck−1)}+ {Hm(ck∗)− Hm(ck∗−1)}.

Apply the mean value theorem to the first term while the last two terms equal Hm/K to get that
H ≤ |c−c∗|Ḣm(c̃)+2HmK−1, for an intermediate point c̃ so |c̃−c| ≤ |c−c∗|. Now, c−c∗ = n−1/2ac/σ
where |n−1/2a/σ| ≤ n−1/4−ηB/σ. Lemma A.4 with A = n−1/2a/σ and B = 0 shows that |c| ≤ 2|c̃|.
Further, |u|Ḣm(u) = |u|{1 + m4(u)}f(u) is bounded uniformly in u ∈ R by Assumption 2.2(ib1),
while K = int(n1/2/δ). Hence,

H ≤ C|n−1/2a/σ|+ 2HmK−1 = {O(n1/4−η) + 2Hm}K−1 = O(n1/4−η)(Hm/K). (A.15)

Thus, the number of grid points between ck∗ , ck is O(n1/4−η).
2.2. Cover of ck∗ , ck for all k∗, k. Since ck takes K = O(n1/2) values and there are O(n1/4−η) grid
points between ck∗ , ck, uniformly in k, we have L = O(n1/2)O(n1/4−η) combinations of k∗, k.
2.3. Apply Theorem A.3 with ` = (k∗, k) and L = O(nλ) so λ = 3/4 − η. Let υ = 3/8 − η/2 + ω
and κ̃ = 1/8 + η/2− ω so that υ + κ̃ = 1/2. Choose w̃in = |win|1/2 so that, using (A.14),

z̃`i = |win|−1/2zi(c
∗, c) = |win|−1/2winm(εi/σ){1(εi≤σc∗) − 1(εi≤σc)}.

It suffices to show the result on Dn = (max1≤i≤n |win| ≤ n1/2−ω/5) since P(Dcn) vanishes for large
n by Assumption 2.2(ib1), see (A.9). We check the conditions of Theorem A.3.
Condition E(z̃4

`i) <∞ holds by Assumption 2.2(i, iii), see also proof of Lemma A.7, item 2.1.
Condition EDq = O(nς) for q = 1, 2. Let Dq = max1≤`≤L

∑n
i=1Ei−1z̃

2q

`i . By the bound (A.2) then

Ei−1z̃
2q

`i = |win|2
q−1

Ei−1m
2q(εi/σ)|1(εi≤σc∗) − 1(εi≤σc)| ≤ |win|

2q−1 |Hm(ck)− Hm(ck∗)|. (A.16)

By (A.15) and K−1 = O(n−1/2) then Ei−1z̃
2q

`i = |win|2
q−1

O(n−1/4−η) uniformly in `. By Assumption
2.2(iii) then

EDq = O(n−1/4−η)E
∑n

i=1|win|
2q−1

= O(n3/4−η) = O(nς).

Conditions (i), (ii): ς = 3/4− η < 3/4− η+ 2ω = 2υ and ς +λ = 3/2− 2η ≤ 3/2− 2η+ 4ω = 4υ.�

A.6 A Lipschitz result

This is the last ingredient to the main result.

Lemma A.12. Apply Assumption 2.1, 2.2(ia, ib2, ic, id, ii, iii) where m̃ is either uṁ(u) or ṁ(u)
only. Let smi = n−1/2amεi/σ + n−1/2b′m(n1/2xin) and vi(θ, c) = winσ

−1[m{(εi − smi)/σ} −
m(εi/σ)]1(εi≤σc+x′inb1) where θ = (0, b1, am, bm). Then, ∀B > 0, it holds

sup
|θ|≤Bn1/4−η

sup
c∈R
|n−1/2∑n

i=1{vi(θ, c)− Ei−1vi(θ, c)}| = oP(1).

Proof of Lemma A.12: Decomposition. By the mean value theorem,

m(
εi − smi

σ
) = m(

εi
σ

)− smi
σ
ṁ(

εi
σ

)− smi
σ
{ṁ(

ε∗i
σ

)− ṁ(
εi
σ

)},

17



for intermediate points ε∗i so |ε∗i − εi| ≤ |smi|. Insert this in the expression for vi(θ, c), add and
subtract winsmiσ

−1ṁ(εi/σ)1(εi≤σc) to get vi(θ, c) =
∑3

s=1 vsi(θ, c) where

v1i(θ, c) = −winsmiσ−1ṁ(εi/σ){1(εi≤σc+x′inb1) − 1(εi≤σc)},
v2i(θ, c) = −winsmiσ−1ṁ(εi/σ)1(εi≤σc),

v3i(θ, c) = −winsmiσ−1{ṁ(ε∗i /σ)− ṁ(εi/σ)}1(εi≤σc+x′inb1).

Likewise, let Vsn(θ, c) = n−1/2
∑n

i=1{vsi(θ, c) − Ei−1vsi(θ, c)}. By the triangle inequality it suffices
to show that each Vsn is oP(1) uniformly in θ, c.
1. The term V1n(θ, c) is oP(1) uniformly in θ, c. Insert smi to get

v1i(θ, c) = winσ
−1{(n−1/2am)(εi/σ)

+ (n−1/2b′m)(n1/2xin)}ṁ(εi/σ)}{1(εi≤σc+x′inb1) − 1(εi≤σc)}, (A.17)

where n−1/2am, n
−1/2bm are O(n−1/4−η). Apply Lemma A.10 coordinate-wise to the sums involving

win(εi/σ)ṁ(εi/σ) and winn
1/2xinṁ(εi/σ) to see that V1n(θ, c) is O(n−1/4−η)oP(nκ) = oP(n−1/4),

recalling κ < η. Assumptions in Lemma A.10 are met for weights and marks win, uṁ(u) and
winn

1/2xin, ṁ(u) by Assumption 2.2(ia, ib2, ic, ii, iii).
2. The term V2n(θ, c) is oP(1) uniformly in θ, c. Insert smi to get

v2i(θ, c) = winσ
−1{(n−1/2am)(εi/σ) + (n−1/2b′m)(n1/2xin)}ṁ(εi/σ)}1(εi≤σc).

Apply Lemma A.9 coordinate-wise to the sums involving win(εi/σ)ṁ(εi/σ) and winn
1/2xinṁ(εi/σ)

with d = 0, 1 to see that ∀ω > 0 then V2n(θ, c) is O(n−1/4−η)oP(n1/4+κ+ω). In particular, for
ω < η − κ the product of remainder terms is oP(1). The assumptions in Lemma A.9 are met for
weights and marks win, uṁ(u) and n1/2winxin, ṁ(u) by Assumption 2.2(ia, ii, iii).
3. The term V3n(θ, c) is oP(1) uniformly in θ, c. We use a Lipschitz argument.
3.1. Truncate xin using the sets Cn ⊂ Cin outlined in (A.12). Thus, |V3n(θ, c)| vanishes if
|V3n(θ, c)|1Cn vanishes. The triangle inequality and Cn ⊂ Cin show
|V3n(θ, c)|1Cn ≤

∑n
i=1{|v3i(θ, c)1Cin |+ Ei−1|v3i(θ, c)1Cin |}.

3.2. Bound v3i on Cin: Recalling smi = εin
−1/2am/σ + x′nibm, |n1/2xni| ≤ Cxn

κ on Cin, κ < η,
while n−1/2am, n

−1/2bm = O(n−1/4−η) shows

|smi|1Cin = o(n−1/4)(1 + |εi/σ|)1Cin . (A.18)

We note that |ε∗i − εi| ≤ |smi|. Thus, the local Lipschitz condition (id) shows |ṁ(ε∗i /σ) −
ṁ(εi/σ)|1Cin ≤ σ−1|ε∗i − εi|m̊(εi/σ)1Cin , which can be bounded further by
o(n−1/4)(1 + |εi/σ|)m̊(εi/σ)1Cin . Insert this in v3i, apply (A.18) and (1 + |ε|)2 ≤ 2(1 + |ε|2) to
get |v3i(θ, c)|1Cin = o(n−1/2)ṽi where ṽi = |win|(1 + |εi/σ|2)m̊(εi/σ). Here Ei−1ṽi = |win|o(1) by
Assumption 2.2(id) and the o(1) term is uniform in i.
3.3. Bound V3n on Cin: Insert the |v3i|1Cin bound in that of |V3n|1Cn to get

Vsup
3n = sup

|θ|≤Bn−η
sup
c∈R
|V3n(θ, c)|1Cn = o(n−1/2)n−1/2∑n

i=1(ṽi + Ei−1ṽi).

Taking expectations and using iterated expectations shows that EVsup
3n = o(n−1)E

∑n
i=12Ei−1ṽi. The

bound Ei−1ṽi = |win|o(1) from item 3.2 gives EVsup
3n = o(n−1)E

∑n
i=1|win|, which then vanishes by

Jensen’s inequality and Assumption 2.2(iii). Then, the Markov inequality shows Vsup
3n vanishes. �

A.7 Proof of Theorem 2.1

Part A: The Empirical Process: Define Vn(θ, c) = Fw,mn (θ, c)−Fw,mn (0, c) where θ = (a1, b1, am, bm).
It has to be shown that Vn(θ, c) vanishes uniformly in θ, c. Add and subtract Fw,mn (θa, c) with
θa1 = (a1, 0, 0, 0) to decompose Vn = V1n + V2n where

V1n(θ, c) = Fw,mn (θ, c)− Fw,mn (θa1 , c), V2n(θ, c) = Fw,mn (θa1 , c)− Fw,mn (0, c).
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Here, V1n is concerned with estimation error in the location b1 as well as in the marks, am, bm,
while V2n is concerned with estimation error in scale a1.
1. The term V1n(θ, c) equals V1n{0, b1, am, bm, c(1 + n−1/2a1/σ)} so that

sup
|a1|≤Bn1/4−η

sup
c∈R
|V1n(a1, b1, am, bm, c)| = sup

c∈R
|V1n(0, b1, am, bm, c)|.

Thus, it suffices, in this part of the proof, to let a1 = 0 and consider θ = (0, b1, am, bm), so that
V1n(θ, c) = n−1/2

∑n
i=1{v1i(θ, c)− Ei−1v1i(θ, c)} where

v1i(θ, c) = win{m(εa,bi /σ)1(εi≤σc+x′inb1) −m(εi/σ)1(εi≤σc)},

with εa,bi /σ = (εi − x′inbm)/(σ + n−1/2am). Linearize

εa,bi = εi(1− n−1/2ãm/σ)− x′inb̃m = εi − s̃mi, (A.19)

where ãm = am/(1 + n−1/2am/σ) and b̃m = bm/(1 + n−1/2am/σ) and s̃mi = n−1/2ãmεi/σ − x′inb̃m
Given the bounds to am, bm there exist n0, B̃ > 0 so that |ãm|, |b̃m| ≤ B̃n1/4−η for n ≥ n0. It
suffices to show the uniform result over this larger region. Henceforth, we work with the linearized
estimation error and, for the remainder of part A, ignore the tildes so that

v1i(θ, c) = win{m(
εi − smi

σ
)1(εi≤σc+x′inb1) −m(

εi
σ

)1(εi≤σc)}.

Add and subtract winm(εi/σ)1(εi≤σc+x′inb1) to get v1i =
∑2

s=1 v1si and V1n =
∑2

s=1 V1ns where

v11i(θ, c) = winm(εi/σ){1(εi≤σc+x′inb1) − 1(εi≤σc)},

v12i(θ, c) = win{m(
εi − smi

σ
)−m(εi/σ)}1(εi≤σc+x′inb1).

Due to the triangle inequality it suffices to show that each of V11n(θ, c) and V12n(θ, c) are oP(1) uni-
formly in θ, c by applying Lemma A.10 with d = 0 and Lemma A.12, respectively. All assumptions
are satisfied for weights and marks win,m by Assumption 2.2(ia, ib1, ib2, ic, id, ii, iii).
2. The term V2n(a1, c) is oP(1) uniformly in θ, c. To see this apply Lemma A.11 noting that its
assumptions are satisfied for weights and marks win,m by Assumption 2.2(ia, ib1, iii).
Part B: The Compensator : We let V̄n(θ, c) = n1/2{Fw,mn (θ, c) − F

w,m
n (0, c) − Bw,mn (θ, c)} for a pa-

rameter θ = (am, a1, bm, b1) and show that V̄n vanishes uniformly in θ, c. Use (A.19) and write

F
w,m
n (θ, c) = n−1∑n

i=1winEi−1m(
εi − s̃mi

σ
)1(εi≤σc+s1i),

where s̃mi = n−1/2ãm(εi/σ) + x′inb̃m and s1i = cn−1/2a1 + x′inb1, where ãm, b̃m are defined above.
The bias term Bw,mn (θ, c) can be expressed in terms of smi = n−1/2am(εi/σ) + x′inbm as

Bw,mn (θ, c) = σ−1n−1/2∑n
i=1win{s1im(c)f(c)− Ei−1smiṁ(εi/σ)1(εi≤σc)}.

Thus, we can write V̄n(θ, c) = n−1/2
∑n

i=1winv̄i(θ, c) where

v̄i(θ, c) = winEi−1{m{(εi − s̃mi)/σ}1(εi≤σc+s1i)

−m(εi/σ)1(εi≤σc) − s1im(c)f(c) + smiṁ(εi/σ)1(εi≤σc)}. (A.20)

Add and subtract the terms {m(εi/σ) + (s̃mi/σ)ṁ(εi/σ)}1(εi≤σc+s1i) and (s̃mi/σ)ṁ(εi/σ)1(εi≤σc)
to get v̄i =

∑4
s=1 v̄si and V̄n =

∑4
s=1 V̄sn where

v̄1i(θ, c) = winEi−1{m(
εi − s̃mi

σ
)−m(

εi
σ

) +
s̃mi
σ
ṁ(

εi
σ

)}1(εi≤σc+s1i),

v̄2i(θ, c) = win[Ei−1m(
εi
σ

){1(εi≤σc+s1i) − 1(εi≤σc)} −
s1i

σ
m(c)f(c)],

v̄3i(θ, c) = winEi−1
s̃mi
σ
ṁ(

εi
σ

){1(εi≤σc+s1i) − 1(εi≤σc)},

v̄4i(θ, c) = winEi−1
smi − s̃mi

σ
ṁ(

εi
σ

)1(εi≤σc).
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We truncate xin using the sets Cn ⊂ Cin outlined in (A.12) and using Assumption 2.2(ii). Thus,
V̄sn(θ, c) vanishes if V̄sn(θ, c)1Cn vanishes. In turn, V̄n(θ, c) will vanish by the triangle inequality.
Since Cn ⊂ Cin and Cin is Fi−1-adapted then |V̄sn(θ, c)|1Cn ≤

∑n
i=1Ei−1|v̄si(θ, c)1Cin |. We show that

each summand satisfies, for s = 1, . . . , 4 and uniformly in θ, c,

|v̄si(θ, c)|1Cin = O(n−1/2)|win|1Cin . (A.21)

Then, Assumption 2.2(iii) and the Markov inequality gives |V̄sn|1Cn = oP(1).
1. V̄1n(θ, c). Consider m̆1i = m{(εi − s̃mi)/σ} − m(εi/σ) − σ−1s̃miṁ(εi/σ). We get |s̃mi|1Cin =
o(n−1/4)(1 + |εi/σ|)1Cin as in (A.18). The mean value theorem gives, for an intermediate point
ε∗i so |ε∗i − εi| ≤ |s̃mi| the expansion m̆1i = −σ−1s̃mi{ṁ(ε∗i /σ) − ṁ(εi/σ)}. Thus, |m̆1i|1Cin ≤
σ−1s̃2

mim̊(εi)1Cin by the local Lipschitz condition in Assumption 2.2(id). Further, |m̆1i|1Cin =
o(n−1/2)(1 + |εi/σ|2)m̊(εi)1Cin by the bound to |s̃mi|1Cin . The integrability of m̊ then shows
Ei−1|m̆1i|1Cin = O(n−1/2−2η)1Cin , uniformly in θ, c. In turn, |v̄1i(θ, c)|1Cin has the form (A.21).

2. V̄2n(θ, c). Write v̄2i(θ, c) = win{
∫ c+s1i/σ
c m(u)f(u)du − s1i

σ m(c)f(c)}. Taylor expand K(s) =∫ c+s
c k(u)du as K(s) = sk(c) + 2−1k̇(c∗) for some c∗ so |c∗ − c| ≤ s.

Hence, v̄2i(θ, c) = (win/2)(s1i/σ)2{ṁ(c∗)f(c∗) + m(c∗)ḟ(c∗)} for c∗ so that |c∗ − c| ≤ |s1i| where
s1i = n−1/2a1c+ x′inb1. Since |a1| ≤ Bn1/4−η then, for large n, we can use the second inequality in
Lemma A.4 with A = n−1/2a1, B = x′inb1 and c̃ = c∗ to get

|v̄2i(θ, c)| ≤ |win|8σ−2[(c∗)2(n−1/2a1)2 + (x′inb1)2]|ṁ(c∗)f(c∗) +m(c∗)ḟ(c∗)|.

Recall |a1|, |b1| ≤ Bn1/4−η while n1/2xni = O(nκ) = o(nη) on Cin to get

|v̄2i(θ, c)|1Cin = o(n−1/2)|win| supu∈R(1 + u2)|ṁ(u)f(u) +m(u)ḟ(u)|1Cin .

By Assumption 2.2(ib3) we get |v̄2i(θ, c)|1Cin = o(n−1/2)|win|1Cin , which is of the form (A.21).
3. V̄3n(θ, c). Note |s̃mi|1Cin = o(n−1/4)(1 + |εi/σ|)1Cin as in (A.18) and let
H = Ei−1(1 + |εi/σ|)|ṁ(εi/σ)||1(εi≤σc+s1i) − 1(εi≤σc)| so that |v̄3i(θ, c)|1Cin = o(n−1/4)|win|H1Cin .

Apply Lemma A.5 using Assumption 2.2 (ia, ib3) to get H = O(n−1/4−η)(1 + |n1/2xin|). The
truncation of xni gives H1Cin = o(n−1/4)1Cni . Thus v̄3i(θ, c) satisfies (A.21).
4. V̄4n(θ, c). Expand smi − s̃mi = n−1{εi(aσm)2 + n1/2x′inbma

σ
m}/(1 + n−1/2aσm) where aσm = am/σ.

Use the bounds am, bm, a
σ
m = O(n1/4−η) to get that smi − s̃mi = O(n−1/2−2η)(1 + |n−1/2xin|)(1 +

|εi/σ|). The xni truncation gives (smi − s̃mi)1Cin = o(n−1/2)(1 + |εi/σ|)1Cin . Since Ei−1(1 +
|εi/σ|)|ṁ(εi/σ)| <∞ by Assumption 2.2(ia) then v̄4i(θ, c)1Cin satisfies (A.21). �

B Proof of robust normality results

B.1 Two sided empirical processes

Introduce

Gw,mn (θ,c) =
1

n

∑n
i=1m

(
εi − x′inbm
σ + n−1/2am

)
1(|εi−x′inb|≤σc+n−1/2a1c)

, (B.1)

so that Gw,mn (θ,c) = Fw,mn (θ,c)− limh↓0 Fw,mn (θ,− c−h). The corresponding compensator Ḡw,mn , bias
term Gw,mn = Gw,m1n − Gw,mmn and empirical process Gw,m

n are defined similarly. The following three
results are immediate consequences of Theorems 2.1, 2.2.

Corollary B.1. Suppose Assumptions 2.1, 2.2 hold. Then, ∀B > 0,

sup
|θ|≤Bn1/4−η

sup
c>0
|Gw,m

n (θ,c)−Gw,m
n (0, c)| = oP(1),

sup
|θ|≤n1/4−ηB

sup
c>0
|n1/2{Ḡw,mn (θ,c)− Ḡw,mn (0, c)} − Gw,mn (θ, c)| = oP(1).

Corollary B.2. Suppose Assumptions 2.1, 2.3 hold. Then, ∀ε > 0,

lim
φ↓0

lim sup
n→∞

P{ sup
c,c†∈R:|G(c†)−G(c)|≤φ

|Gk
n(0, c†)−Gk

n(0, c)| > ε} → 0.
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B.2 Preliminary Lemmas

Lemma B.3. If win = 1, m(c) = ck and f is symmetric, then the two sided bias term of Corollary
B.1 is Gkn(θ, c) = Gk1n(θ1, c)− Gkmn(θm, c), where

Gk1n(θ1, c) = 1(k even)2c
k+1f(c)σ−1a1 + 1(k odd)2c

kf(c)σ−1n−1/2∑n
i=1x

′
inb1,

Gkmn(θm, c) = 1(k even)kτ
c
kσ
−1am + 1(k odd)kτ

c
k−1σ

−1n−1/2∑n
i=1x

′
inbm.

Proof of Lemma B.3. By definition Gkjn(·, c) = B1,k
jn (·, c) − limc̃↓c B1,k

jn (·,−c̃) for j = 1,m. Set

win = 1, m(c) = ck, note f is symmetric and compute B1,k
jn (θj , c) from the general formulas (2.5),

(2.6) to get the result. �

Lemma B.4. Let Assumption 2.2 hold with win = 1 and m(u) = uk and symmetric density f. Let
θ1 = (a1, b1), θm = (am, bm) be estimation errors for indicator and mark. Let cd = c + n−1/2d1 be
an additively shifted quantile and let θd1 = (σd1c

−1, 0), while θ = (θ1, θm) and θd = (θ1 + θd1 , θm).
Then, ∀B, η > 0 and uniformly in c and |θ|, |d1| ∈ n1/4−ηB we get:
(a) Gkjn(θj , c

d) = Gkjn(θj , c) + oP(1) for j = 1,m;

(b) n1/2{Ḡkn(0,cd)− Ḡkn(0,c)} = Gk1n(θd1 , c) + oP(1)
where Gk1n(θd1 , c) = 1(k even)2c

kf(c)σ−1d1;

(c) n1/2{Gkn(θ,cd)− Ḡkn(0, c)} = n1/2{Gkn(0, c)− Ḡkn(0, c)}+ Gkn(θd, c) + oP(1);
(d) Gkn(θ,cd) = Ḡkn(0, c) + oP(1).

Proof of Lemma B.4. (a) Evaluate the biases in Lemma B.3 at cd to get

Gk1n(θ1, c
d) = 1(k even)2(cd)k+1f(cd)σ−1a1

+1(k odd)2(cd)kf(cd)σ−1n−1/2∑n
i=1x

′
inb1,

Gkmn(θm, c
d) = 1(k even)kτ

cd

k σ
−1ah + 1(k odd)kτ

cd

k−1σ
−1n−1/2∑n

i=1x
′
inbh.

For Gk1n we note that vp(c) = cpf(c) for p = k, k + 1 has bounded derivatives by Assumption
2.2(ib3). Then the mean value theorem shows vp(c

d) = vp(c) + (cd − c)v̇p(c∗) for an intermediate
point c∗ so that |c∗ − c| ≤ |cd − c|. Since cd − c = n−1/2d1 = O(n−1/4−η) we get vp(c

d) = vp(c) +
O(n−1/4−η). Since θ1 = O(n1/4−η) and n−1/2

∑n
i=1 |xin| ≤ n1/2 max1≤i≤n |xin| = OP(nκ) with κ < η

by Assumption 2.2(ii) then n−1/2
∑n

i=1x
′
inb1 = oP(n1/4) so that Gk1n(θ1, c

d) = Gk1n(θ1, c) + oP(n−η).
For Gkmn the only difference in the argument is that we replace the function v(c) by w(c) = τ cp

defined in (3.4) for p = k− 1, k. This function has derivate ẇ(c) = cpf(c) which is also bounded by
assumption 2.2(ib3). Hence, Gkmn(θm, c

d) = Gkmn(θm, c) + OP(n−2η).
(b) The term of interest is S̄

∑n
i=1Ei−1(εi/σ)k{1(|εi|≤σcd) − 1(|εi|≤σc)}. Write cd = c + n−1/2d1 and

let x̃in = n−1/2 and bd = σd1 so that 1(|εi|≤σcd) = 1(|εi|≤σc+x̃inbd). Thus

S̄ = n−1/2
∑n

i=1Ei−1(εi/σ)k{1(|εi|≤σc+x̃inbd) − 1(|εi|≤σc)}, so that with θ̃ = (0, 0, 0, bd) we can write

S̄ = n1/2{F̄kn(θ̃, c)− F̄kn(0, c)} − n1/2{lim
c↓c

F̄kn(−θ̃,−c)− lim
c↓c

F̄kn(0,−c)}

Now we apply Theorem 2.1 to each term on the right hand side. For both terms the regressors
are x̃in = n−1/2 while θ, c are θ̃, c and −θ̃,−c, respectively, and where bd = σd1 is of order n1/4−η.
Hence, the assumptions of Theorem 2.1 are met in this situation by assumption 2.2, so that

S̄ = {B1,k
n (θ̃, c) + oP(1)} − {B1,k

n (−θ̃,−c) + oP(1)}.

Recall the expression B1,k
n in (2.5) and note that x̃in = n−1/2 so that n−1/2

∑n
i=1x̃inb

d = bd to
get S̄ = σ−1ckf(c)bd − σ−1(−c)kf(−c)(−bd) + oP(1). Given the symmetry of the density f and
bd = σd1 while θd1 = (σd1c

−1, 0) we get as desired S̄ = 1(k even)2σ
−1ck+1f(c)σd1c

−1 + oP(1) =

Gk1n(θd1 , c) + oP(1).
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(c) The bias G in Lemma B.3 shows that for θd = (θ1 + θd1 , θm) we have Gkn(θd, c) = Gkn(θ, c) +
Gk1n(θd1 , c). Thus, we can write

n1/2{Gkn(θ,cd)− Ḡkn(0, c)} = n1/2{Gkn(0,c)− Ḡkn(0, c)}+ Gkn(θd, c) +
∑5

j=1Rj ,

with remainder terms

R1 = n1/2{Gkn(θ,cd)− Ḡkn(θ,cd)− Gkn(0,cd) + Ḡkn(0,cd)},
R2 = n1/2{Gkn(0,cd)− Ḡkn(0,cd)− Gkn(0,c) + Ḡkn(0,c)},
R3 = n1/2{Ḡkn(θ,cd)− Ḡkn(0,cd)} − Gkn(θ, cd),

R4 = n1/2{Ḡkn(0,cd)− Ḡkn(0,c)} − Gk1n(θd1 , c),

R5 = Gkn(θ, cd)− Gkn(θ, c).

We get R1,R3 = oP(1) by Corollary B.1, R2 = oP(1) by Corollary B.2, R4 = oP(1) by part (b)
and R5 = oP(1) by part (a) noting Gkn = Gk1n − Gkmn.
(d) Apply part (c) multiplied by n−1/2. The first term Gkn(0,c)−Ḡkn(0,c) vanishes uniformly in c since
the finite dimensional distributions vanish by the Law of Large Numbers and the process is tight by
Corollary B.2. Finally, for the second term, note that Gkn(θd, c) = Gk1n(θ1, c)+Gkmn(θm, c)+Gk1n(θd1 , c).
Recall the expressions of these terms in Lemma B.3 and part (c). Apply the triangle inequality to
get

|Gk1n(θ1, c)| ≤ 1(k even)2|ck+1|f(c)σ−1|a1|

+ 1(k odd)2|ck|f(c)σ−1n−1/2∑n
i=1|xin||b1|,

|Gkmn(θm, c)| ≤ 1(k even)kτ
c
kσ
−1|am|+ 1(k odd)kτ

c
k−1σ

−1n−1/2∑n
i=1|xin||bm|,

|Gk1n(θd1 , c)| ≤ 1(k even)2|ck|f(c)|d1|

Note that |ck+1|f(c) and |ck|f(c) are bounded by Assumption 2.2(ib3), the estimation errors,
a1, am, d1 are assumed O(n1/4−η) while n−1/2

∑n
i=1x

′
inbj = oP(n1/4) for j = 1,m as in part (a).

Hence, Gkn(θd, c) = O(n1/4) uniformly in c, θ, d1 so that n−1/2Gkn(θd, c) vanishes. �

B.3 Preliminary Results on Estimators

The estimators we consider have an expansion with a leading term that is of least squares form.
For such estimators we can exploit the following result for the sum of predictors.

Lemma B.5. Let xi = (1, z′i)
′ while (mi)i∈N is a random sequence, and

N−1(β̂ − β) = (N ′
∑n

i=1xix
′
iN)−1N ′

∑n
i=1ximi + oP(1). (B.2)

Assume
∑n

i=1N
′xi = OP(n1/2) and

∑n
i=1xix

′
i is invertible. Then,∑n

i=1x
′
i(β̂ − β) =

∑n
i=1mi + oP(n−1/2).

Proof of Lemma B.5. The sum of predictors satisfy
∑n

i=1x
′
i(β̂ − β) =

∑n
i=1x

′
iNN

−1(β̂ − β).
Given expansion (B.2) we can write∑n

i=1x
′
i(β̂ − β) =

∑n
i=1x

′
iN(N ′

∑n
i=1xix

′
iN)−1N ′

∑n
i=1ximi + oP(1)

∑n
i=1x

′
iN.

The normalizations cancel in the first term. Thus, we can normalize by any invertible matrix A.
For the second term note

∑n
i=1 x

′
iN = OP(n1/2) by assumption. Hence, we can write∑n

i=1x
′
i(β̂ − β) =

∑n
i=1x

′
iA(A′

∑n
i=1xix

′
iA)−1A′

∑n
i=1ximi + oP(n1/2).
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Noting xi = (1, z′i)
′ define the sample average z̄ = n−1

∑n
i=1zi and choose

A′ =

(
1 −z̄′
0 Idim z

)
so that A′xi =

(
1

zi − z̄

)
.

Since
∑n

i=1(zi − z̄) = 0 we get∑n
i=1x

′
iA(A′

∑n
i=1xix

′
iA)−1A′

∑n
i=1ximi

=

(
n
0

)′{
n 0
0
∑n

i=1(zi − z̄)(zi − z̄)′
}−1∑n

i=1

(
1

zi − z̄

)
mi,

which equals
∑n

i=1mi. Insert in the above expression for
∑n

i=1x
′
i(β̂ − β). �

Lemma B.6. Let β̂, σ̂ be full sample least squares estimators of β, σ. Suppose Assumptions 2.1
4.1(ii) and E(εi|Fi−1) = 0, supn E(ε2

n|Fn−1) <∞ a.s. Then

N−1(β̂ − β) = (N ′
∑n

i=1xix
′
iN)−1N

∑n
i=1xiεi, (B.3)

n1/2(σ̂ − σ) = (σ/2)n−1/2∑n
i=1{(εi/σ)2 − 1}+ oP(1). (B.4)

Proof of Lemma B.6. (B.3) follows by the definition of the least squares estimator and linearity
of the model. For (B.4) note that

n1/2(σ̂2 − σ2) = n−1/2∑n
i=1(ε̂2

i − σ2)

= n−1/2∑n
i=1(ε2

i − σ2)− n−1/2∑n
i=1εix

′
i(
∑n

i=1xix
′
i)
−1∑n

i=1xiεi. (B.5)

The second term is of order o{n−1/2(log λmax)2} a.s., see [16, Lemma 1]. This vanishes since
log λmax = OP(log n) by assumption. Further, write

σ̂ − σ = (σ2 + σ̂2 − σ2)1/2 − σ = σ{(1 +
σ̂2 − σ2

σ2
)1/2 − 1}.

Expand (1 + x)1/2 = 1 + x/2 + (1 + x∗)−3/2x2/8 for some x∗ so |x∗| ≤ |x|. For small x then
(1 + x)1/2 = 1 + x/2 + O(x2). Insert x = (σ̂2 − σ2)/σ2. �

Lemma B.7 (Jiao, Nielsen [8]). Consider the robustified least squares estimator. Suppose Assump-
tion 2.2 holds. Then, uniformly in c ∈ [c0,∞),

N−1(β̂RLS − β) = (τ c0N
′∑n

i=1xix
′
iN)−1N ′

∑n
i=1xiεi1(|εi|≤σc)

+ {2cf(c)/τ c0}N−1(β̂(0) − β) + oP(1), (B.6)

n1/2(σ̂RLS − σ) = {σ/(2τ c2)}n−1/2∑n
i=1{(εi/σ)21(|εi|≤σc) − τ

c
2}

− {σ/(2τ c0)}n−1/2∑n
i=1{1(|εi|≤σc) − τ

c
0}

+ {2c(c2 − τ c2/τ c0)f(c)}/(2τ c2)n1/2(σ̂(0) − σ) + oP(1), (B.7)

where the initial estimators β̂(0), σ̂(0) have expansions given in Lemma B.6.

The least trimmed squares estimator has been analyzed by [21, 12].

Lemma B.8. Let β̂LTS, σ̂LTS, ĉ be the LTS, the 1-step variance and the quantile estimators,
respectively. Suppose Assumptions 2.2, 4.2 hold. Then

N−1(β̂LTS − β) = {τ c0 − 2cf(c)}−1(N ′
∑n

i=1xix
′
iN)−1N ′

∑n
i=1xiεi1(|εi|≤σc) + oP(1), (B.8)

n1/2(ĉ− c) = −{2f(c)}−1n−1/2∑n
i=1{1(|εi|≤σc) − τ

c
0}+ oP(1), (B.9)

n1/2(σ̂LTS − σ) = (σ/2τ c2)n−1/2

×
∑n

i=1[{(εi/σ)21(|εi|≤σc) − τ
c
2} − c2{1(|εi|≤σc) − τ

c
0}] + oP(1). (B.10)

Proof of Lemma B.8: See [12, Theorems 4, 5] �
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B.4 Proof of results for robustified least squares estimators

We represent the truncated moments (4.2) in terms of the two sided processes introduced in §B.1. In
this section the superscript RLS is ignored. Let θ̂1 = (ã, b̃) where ã = n1/2(σ̃−σ) and b̃ = N−1(β̃−β)
are the full sample least squares estimation errors. Let also θ̂m = (â, b̂) where â = n1/2(σ̂ − σ),
b̂ = N−1(β̂−β) are the least squares estimation errors for the selected sub-sample. In combination
we get θ̂ = (θ̂1, θ̂m). These errors were analyzed in Lemmas B.6, B.7. Then,

n1/2µ̂RLSk,c = n1/2Gkn(θ̂, c)/G0
n(θ̂, c). (B.11)

We will expand the third and fourth moment test statistics in terms of the vectors zc3,i and zc4,i
given in (4.4), which are asymptotically independent.

Lemma B.9. Let Assumption 4.1 hold. Recall ζ3,c and ζ4,c defined in (4.7). Then, uniformly in
c ≥ c0 for some c0 > 0, we get the expansions
(a) G0

n(θ̂, c) = τ c0 + oP(1);
(b) n1/2G3

n(θ̂, c) = ζ ′3,cn
−1/2

∑n
i=1z

c
3,i + oP(1);

(c) n1/2{G4
n(θ̂, c)− (τ c4/τ

c
0)G0

n(θ̂, c)} = ζ ′4,cn
−1/2

∑n
i=1z

c
4,i + oP(1).

Proof of Lemma B.9. (a) Apply Lemmas A.1, B.4(d) with d1 = 0 noting that Ḡ0
n(0, c) = τ c0 .

(b) Let N3,c = G3
n(θ̂, c)− Ḡ3

n(0, c) noting that Ḡ3
n(0, c) = Eε31(|εi|≤σc) = 0. Due to Lemmas A.1 and

B.4(c) with d1 = 0,

n1/2N3,c = n1/2{G3
n(0, c)− Ḡ3

n(0, c)}+ G3
n(θ̂, c) + oP(1). (B.12)

Lemma B.3 shows that the bias term is

G3
n(θ̂, c) = 2c3f(c)σ−1n−1/2∑n

i=1x
′
inb̃− 3τ c2σ

−1n−1/2∑n
i=1x

′
inb̂.

Hence, given expansions (B.3), (B.6) for b̃, b̂, respectively, Lemma B.5 shows∑n
i=1x

′
inb̃ =

∑n
i=1εi = σ(0, 0, 1)n−1/2∑n

i=1z
c
3,i,∑n

i=1x
′
inb̂ = (1/τ c0)

∑n
i=1εi1(|εi|≤σc) + {2cf(c)/τ c0}

∑n
i=1εi + oP(1)

= σ{0, 1/τ c0 , 2cf(c)/τ c0}n−1/2∑n
i=1z

c
3,i,

so that
G3
n(θ̂, c) = [2c3f(c)(0, 0, 1)− 3τ c2{0, 1/τ c0 , 2cf(c)/τ c0}]n−1/2∑n

i=1z
c
3,i + oP(1).

Insert this expression in (B.12) along with G3
n(0, c) = (1, 0, 0)n−1/2

∑n
i=1z

c
3,i and Ḡ3

n(0, c) = 0 to get

n1/2N3,c = ζ ′3,cn
−1/2

∑n
i=1z

c
3,i + oP(1), where ζ3,c = {1,−3τ c2/τ

c
0 , 2(c2− 3τ c2/τ

c
0)cf(c)}′ as required in

(4.7).
(c) Let N4,c = n1/2{G4

n(θ̂, c)− (τ c4/τ
c
0)G0

n(θ̂, c)}. Due to Lemmas A.1, B.4(c) with d1 = 0, uniformly
in c we get, for p = 0, 4,

n1/2{Gpn(θ̂, c)− Ḡpn(0, c)} = n1/2{Gpn(0, c)− Ḡpn(0, c)}+ Gpn(θ̂, c) + oP(1),

with compensators Ḡpn(0, c) = Eεp1(|εi|≤σc) = τ cp . We note the relation

Ḡ4
n(0, c)− (τ c4/τ

c
0)Ḡ0

n(0, c) = τ c4 − τ c0τ c4/τ c0 = 0.

Therefore we can write

n1/2N4,c = {G4
n(0, c) + G4

n(θ̂, c)} − (τ c4/τ
c
0){G0

n(0, c)− G0
n(θ̂, c)}+ oP(1).

The first components of each term satisfy

G4
n(0, c) = (1, 0, 0, 0)n−1/2∑n

i=1z
c
4,i, G0

n(0, c) = (0, 0, 1, 0)n−1/2∑n
i=1z

c
4,i.
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From Lemma B.3 the bias terms are

G4
n(θ̂, c) = 2c5f(c)σ−1ã− 4τ c4σ

−1â, G0
n(θ̂, c) = 2cf(c)σ−1ã.

Since ã and â satisfy (B.4) and (B.7) we get

G4
n(θ̂, c) = 2c5f(c)(0, 0, 0, 1/2)n−1/2∑n

i=1z
c
4,i

− 2(τ c4/τ
c
2){0, 1,−(τ c2/τ

c
0), c(c2 − τ c2/τ c0)f(c)}n−1/2∑n

i=1z
c
4,i + oP(1),

G0
n(θ̂, c) = 2cf(c)(0, 0, 0, 1/2)n−1/2∑n

i=1z
c
4,i + oP(1).

Add the expansions for G4
n(0, c) and G4

n(θ̂, c) and subtract τ c4/τ
c
0 times the sum of G0

n(0, c) and
G0
n(θ̂, c) to get N4,c = (ζ4,c)

′n−1/2
∑n

i=1z
c
4,i+oP(1) where ζ4,c = [1,−2τ c4/τ

c
2 , τ

c
4/τ

c
0 , {c4−2(τ c4/τ

c
2)c2 +

τ c4/τ
c
0}cf(c)]′ as in (4.7). �

Proof of Theorem 4.1: 1. Empirical process representation. Recall from (B.11) that, for p = 3, 4,
then µ̂p,c = Gkn(θ̂, c)/G0

n(θ̂, c).

2. Denominator. Lemma B.9(a) shows supc≥c0{G
0
n(θ̂, c)− τ c0} = oP(1).

3. Third moment. Lemma B.9(b) shows n1/2G3
n(θ̂, c) has uniform expansion ζ ′3,cn

−1/2
∑n

i=1 z
c
3,i +

oP(1) for c ≥ c0. Noting that (τ c0)2λ6,c = Var{(ζ3,c)
′zc3,i} we then get T̂3,c = n1/2µ̂3,c/λ

1/2
6,c =

T3,c,n + oP(1) uniformly in c ≥ c0.
4. Fourth moment. Write

n1/2(µ̂4,c − τ c4/τ c0) = n1/2{G4
n(θ̂, c)− (τ c4/τ

c
0)G0

n(θ̂, c)}/G0
n(θ̂, c).

Lemma B.9(c) expands the numerator as ζ ′4,cn
−1/2

∑n
i=1 z

c
4,i + oP(1). Proceed as in item 3 to see

that T̂4,c = T4,c,n + oP(1) uniformly in c ≥ c0.
5. Distributions. The Central Limit Theorem shows that the finite dimensional distributions
of T3,c,n, T4,c,n converge jointly to zero mean normal distributions with unit marginal variances.
Comparing the definitions of zcp,i and Gw,mn (θ, c) in (4.4), (B.1), respectively, it is seen that each

coordinate of Tp,c,n is of the form G1,m
n (0, c) so tightness follows from Corollary B.2. �

B.5 Proof of results for least trimmed squares estimators

We represent the truncated moments (4.2) in terms of the two sided processes introduced in §B.1. In
this section the superscript LTS is ignored. Let θ̂ = (θ̂1, θ̂m) with θ̂1 = (0, b̂) and θ̂m = (â, b̂) where
b̂ = N−1(β̂LTS−β) and â = n1/2(σ̂LTS−σ). Let also d̂ = n1/2(ξ̂(h)−σc) where h/n = P(ε2

1 < σ2c2).
These errors were analyzed in Lemmas B.6, B.8. Then,

n1/2µ̂k,h = n1/2Gkn(θ̂, c+ n−1/2σ−1d̂)/G0
n(θ̂, c+ n−1/2σ−1d̂). (B.13)

Lemma B.10. Suppose Assumptions 4.1, 4.2 hold. Recall ζ3,c, ζ4,c from (4.11). Then

(a) G0
n(θ̂, c+ n−1/2d̂) = τ c0 + oP(1);

(b) n1/2G3
n(θ̂, c+ n−1/2σ−1d̂) = ζ ′3,cn

−1/2
∑n

i=1z
c
3,i + oP(1);

(c) n1/2{G4
n(θ̂, c+ n−1/2d̂)− τ c4/τ c0G0

n(θ̂, c+ n−1/2d̂)}
= ζ ′4,cn

−1/2
∑n

i=1z
c
4,i + oP(1).

Proof of Lemma B.10. (a) Apply Lemmas A.1, B.4(d) and Ḡ0
n(0, c) = τ c0 .

(b) Let N3,ĉ = G3
n(θ̂, c + n−1/2d̂) − Ḡ3

n(0, c) noting that Ḡ3
n(0, c) = 0. Let θ̂d1 = (n−1/2σ−1d̂, 0) and

θ̂d = (θ̂1 + θ̂d1 , θ̂m) = (n−1/2σ−1d̂, b̂, â, b̂). Then by Lemmas A.1, B.4(c), n1/2NLTS
3,ĉ = G3

n(0, c) +

G3
n(θ̂d, c) + oP(1). Lemma B.3 shows that G3

n(θ̂d, c) = {2c3f(c)−3τ c2}σ−1n−1/2
∑n

i=1x
′
inb̂. Given that

b̂ = N−1(β̂ − β) has expansion (B.8), then Lemma B.5 shows
∑n

i=1x
′
inb̂ = (τ c2)−1

∑n
i=1εi1(|εi|≤σc) +

oP(1), noting that τ c2 = τ c0 − 2cf(c) by (3.6). Thus,

G3
n(θ̂d, c) = (τ c2)−1{2c3f(c)− 3τ c2}(0, 1, 0)n−1/2∑n

i=1z
c
3,i + oP(1).
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Add G3
n(0, c) = (1, 0, 0)n−1/2

∑n
i=1z

c
3,i to get n1/2N3,c = ζ ′3,cn

−1/2
∑n

i=1z
c
3,i + oP(1) recalling that

ζ3,c = [1, {2c3f(c)− 3τ c2}/τ c2 , 0]′ in (4.11).

(c) Let N4,ĉ = {G4
n(θ̂, c+n−1/2d̂)− τ c4/τ c0G0

n(θ̂, c+n−1/2d̂)}. Due to Lemmas A.1, B.4(c) we get,
for j = 0, 4,

n1/2{Gjn(θ̂LTS ,c+ n−1/2d̂(0))− Ḡjn(0, c)} = Gj
n(0, c) + Gjn(θ̂d, c) + oP(1).

The compensators satisfy the identity (B.4) so that

n1/2N4,ĉ = {G4
n(0, c) + G4

1n(θ̂d, c)} − (τ c4/τ
c
0){G0

n(0, c) + G0
1n(θ̂d, c)}+ oP(1).

The first component of each term satisfy

G4
n(0, c) = (1, 0, 0, 0)n−1/2∑n

i=1z
c
4,i, G0

n(0, c) = (0, 0, 1, 0)n−1/2∑n
i=1z

c
4,i.

From Lemma B.3 the bias terms are

G4
1n(θ̂d, c) = 2c4f(c)σ−1d̂− 4τ c4σ

−1â, G0
1n(θ̂d, c) = 2f(c)σ−1d̂.

Given the expansions for â, d̂ in (B.9), (B.10) we get

G4
1n(θ̂d, c) = {(0, 0,−c4, 0)− 2(τ c4/τ

c
2)(0, 1,−c2, 0)}n−1/2∑n

i=1z
c
4,i,

G0
1n(θ̂d, c) = (0, 0,−1, 0)n−1/2∑n

i=1z
c
4,i.

Add the expansions for G4
n(0, c) and G4

n(θ̂d, c) and subtract τ c4/τ
c
0 times the sum of G0

n(0, c) and
G0
n(θ̂d, c) to get N4,c = ζ ′4,cn

−1/2
∑n

i=1z
c
4,i+oP(1) where ζ4,c = {1,−2τ c4/τ

c
2 ,−τ c4/τ c0 +c22τ c4/τ

c
2−c4, 0}′

as in (4.11). �

Proof of Theorem 4.2. As the proof of Theorem 4.1 replacing Lemma B.10 by Lemma B.9. �
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