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Abstract

Climate policy target variables including emissions and concentrations of greenhouse

gases, as well as global mean temperatures, are non-stationary time series invalidating the

use of standard statistical inference procedures. Econometric cointegration analysis can

be used to overcome some of these inferential difficulties, however, cointegration has been

criticised in climate research for lacking a physical justification for its use. Here I show that

a physical two-component energy balance model of global mean climate is equivalent to a

cointegrated system that can be mapped to a cointegrated vector autoregression, making it

directly testable, and providing a physical justification for econometric methods in climate

research. Doing so opens the door to investigating the empirical impacts of shifts from

both natural and human sources, and enables a close linking of data-based macroeconomic

models with climate systems. My approach finds statistical support of the model using

global mean surface temperatures, 0− 700m ocean heat content and radiative forcing (e.g.

from greenhouse gases). The model results show that previous empirical estimates of the

temperature response to the doubling of CO2 may be misleadingly low due to model mis-

specification.
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1 Introduction

Climate policy target variables including emissions and concentrations of greenhouse gases, as

well as global mean temperatures are non-stationary time series invalidating the use of stan-

dard statistical inference procedures (Pretis & Hendry 2013, Kaufmann et al. 2013, Kaufmann

& Stern 2002, D. I. Stern & Kaufmann 2000). Econometric cointegration analysis can be used to

overcome the inferential difficulties resulting from stochastic trends when that is the only source

of non-stationarity, and is applied to test whether there exist combinations of non-stationary

variables that are themselves stationary (see Hendry and Juselius 2001 for an overview, Juselius

2011 for an application to climate data, and Kaufmann & Juselius 2013 for a paleo-climate

analysis). Cointegration, however, has been criticised in climate research for lacking a physical

justification. In turn, multiple-component physical energy-balance models (see Gregory et al.

2002, Held et al. 2010, Schwartz 2012, Pretis & Allen 2013) that model the ocean and atmosphere

interactions have tracked global mean climate well while remaining analytically tractable, but

are rarely formally tested as estimation is difficult due to the non-stationarity of observations.

Here I show that two-component energy-balance models of global mean climate can be mapped

to a cointegrated system, both making them directly testable, and providing a physical justifi-

cation for econometric methods that account for data non-stationarity. This makes it possible

to estimate a complete system model of global mean-climate model using econometric meth-

ods. Doing so opens the door to investigating the empirical impacts of shifts from both natural

and human sources, and enables a coupling of climate systems with data-based macroeconomic

models where econometric cointegration methods are the norm.

Stern (2013) argues for a new generation of models to better address the disconnect be-

tween climate and economics in integrated assessment models. The present paper provides the

foundation for a new generation of empirical models linking economics and climate, providing a

basis for models that are probabilistic, data-based, consistent with physical processes, and can

be linked with socio-economic models due to the flexible nature of cointegrated systems.

Here I first show the mathematical equivalence of a two-component energy balance model

to a restricted cointegrated system that can be mapped to a cointegrated vector autoregression

(CVAR). This provides a system-based statistical framework in which an EBM can be estimated

jointly (rather than one equation at a time) and therefore can be tested against observed

data. Equally, this mathematical equivalence provides a physical basis for the application

of econometric CVARs in climatology, and places the entire CVAR toolkit at the disposal of

energy balance models coupled with empirical macroeconomic models.

Climate observations are predominantly non-stationary time series invalidating the use of

standard statistical inference procedures such as ordinary least squares regression and simple

correlations. This makes the estimation of parameters in EBMs from observations a challenge.

Additionally, most statistical approaches which estimate model parameters from observations do

not formally test whether the EBM is an appropriate model for the system but rather estimate

one equation at a time. It is, however, exactly the system nature of two-component EBMs and

the non-stationarity of the data that provides a useful property that allows EBMs to be tested

against observations. As I will show, a two-component EBM is equivalent to a restricted CVAR
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and this equivalence implies directly testable assumptions: if the model holds then the modelled

series together form some stationary relations (cointegrate), restrictions across the estimated

equations are not rejected, and individual parameters are statistically significant.

As an application, I estimate a two component EBM through the use of a CVAR and test

it against the observational record. The approach here is highly simplified climatologically and

takes the fast, mixed component as the atmosphere at the surface, while the slower component

is proxied by the ocean heat content1 from 0-700m. I find that tests against the statistical prop-

erties implied by the EBM do not reject the model. The time series form stationary relations

(cointegrate) consistent with theory. Previous empirical estimates of equilibrium climate sensi-

tivity (ECS) – the temperature response to a step-shift doubling of CO2 concentrations – may

be misleadingly low due to model mis-specification (e.g apparent through residual autocorrela-

tion), partly induced by break-like volcanic aerosol forcing. Recursive estimates suggest that

the recent slowdown in temperature increase, the “hiatus” (Kaufmann et al. 2011, Meehl et al.

2011, Watanabe et al. 2013), does not strongly affect the estimate of ECS. A simple forecasting

exercise shows that the hiatus can be approximated through changes in radiative forcing and

ocean heat uptake. The application illustrates the principal of empirical system-based estima-

tion of a climate model, opening the doors to incorporating a macroeconomic model through

the flexible structure of CVARs.

2 Two-Component Energy Balance Models

Two component energy balance models of climate are characterised by a mixed upper layer (the

shallow ocean/atmosphere) with low heat capacity and a deeper ocean layer with higher heat

capacity (Gregory et al. 2002, Held et al. 2010, Schwartz 2012). The upper, mixed (denoted

by subscript m) component responds more quickly to perturbations (radiative forcing such

as an increase in greenhouse gases2) and refers to the mixed layers of the atmosphere and

shallow ocean. The deeper (denoted by subscript d) component responds slower and allows for

delayed, recalcitrant warming (Held et al. 2010). In other words, if external forcing stopped

and the system was in disequilibrium, high temperatures in the deep component would lead

to a slow warming of the mixed atmosphere component (and vice versa). This energy balance

model explicitly takes ocean-atmosphere interactions into account. A simple two-component

EBM is given here as differential equations in (1)-(2). Let Tm be the temperature anomaly

(deviations from steady state) for the mixed layer, Cm is the component heat capacity and

F denotes radiative forcing. Heat capacity denotes the amount of energy needed to change

the temperature of the component. Net heat flux denoting the net incoming energy is given

by Q = F − λTm where climate feedback is defined as λ, the change in downward net flux

with temperatures Tm. The term λT captures the increasing outgoing long-wave radiation with

1The shallow depth implies the lower ”slow” component will not be as slow as suggested in other studies.
2Together with many other factors (e.g. solar irradiance, reflective aerosols from volcanic eruptions, soot,

etc.) the effect of GHGs is quantified through the concept of radiative forcing. In simple terms, this captures the
change in energy in the atmosphere due to a change in concentration of a GHG or other factor. The radiative
forcing effect, measured in watts per square meter (wm−2), is calculated for the different forcing agents (e.g.
GHGs, aerosols) and links the effect of the concentration of a gas on to temperatures.
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increased temperatures.

The upper component of the model describes the changes in heat content relative to the

steady state Cm
dTm
dt as a function of net flux F − λTm and the heat exchange H with the lower

component:

Cm
dTm
dt

= −λTm −H + F (1)

The change in the heat content of the lower component Cd
dTd
dt is given by:

Cd
dTd
dt

= H (2)

where Cd denotes the effective heat capacity of the deep component and Td is the associated

temperature anomaly. The heat exchange between the bottom and upper component is assumed

to be proportional to the difference in temperatures:

H = γ(Tm − Td) (3)

Substituting this expression into the above equations yields the two component model as a

system of two differential equations:

Cm
dTm
dt

= −λTm − γ(Tm − Td) + F (4)

Cd
dTd
dt

= γ(Tm − Td) (5)

Parameters are traditionally estimated using individual equations, or calibrated based on the-

ory or general circulation model (GCM) simulations. I show in section 4 that this system of

differential equations in discrete time is mathematically equivalent to a cointegrated vector

auto-regression which can be estimated using econometric techniques.

3 Cointegrated Vector Autoregressions

Econometric cointegration analysis can be used to overcome difficulties associated with stochas-

tic trends in time series and applied to test whether there exist combinations of non-stationary

series that are themselves stationary. To model both the short-run and long-run relations be-

tween non-stationary time series, I outline the structure of cointegrated vector auto-regressions

(CVAR) in econometrics3 and in the following section show the equivalence to the two-component

energy balance model.

Let Yt = (Y1,t, Y2,t, ..., Yp,t)
′ denote a p-dimensional vector of p non-stationary (specifically

I(1) or integrated of order one4) variables to be modelled for which observations are available

over time. In equilibrium-correction form the CVAR model is given by:

∆Yt = Γ1∆Yt−1 + ...+ Γk∆Yt−k + ΠYt−1 + Φ + εt (6)

3See Hendry & Juselius (2001), and Juselius (2006) for a comprehensive overview of cointegration methods.
4A series that is I(s), or integrated of order s > 0, needs to be differenced s times to be stationary.
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where ∆ is the first difference operator, such that ∆Yt = Yt−Yt−1. The CVAR describes changes

in the endogenous Yt variables as a function of past changes up to k lags through the coefficient

matrices Γ1,Γk and changes in the long run-dynamics as captured through the coefficient matrix

Π. The rank of Π determines the presence of cointegrating, or long-run, stationary relations. If

the rank of Π = 0, there are no cointegrating relations, and if Π is full rank, the system must be

stationary. The matrix Π will have full rank if the series tested are stationary (∼ I(0)) or if all

endogenous stochastic trends can be explained by exogenous variables entering the cointegrating

relation. The matrix has a rank of zero if the series do not cointegrate, and reduced rank

(p > r > 0) if the series cointegrate. The number of cointegrating relations is chosen using the

trace statistic which tests the null hypothesis that there are r−1 cointegrating relations against

the null hypothesis that there are r relations (Johansen 1988, Johansen 1995). To alleviate

concerns associated with small samples, a bootstrapping procedure to test the cointegrating

rank (see Cavaliere et al. 2012) could be used. Using a system approach (Johansen 1988) avoids

many problems associated with single equation cointegration procedures (e.g. Engle & Granger

1987) and does not require pre-testing of the individual series for stationarity (for a discussion

of potential hazards see Pretis & Hendry 2013).

In cointegration, the long-run dynamics are modelled explicitly by decomposing the esti-

mated matrix Π under reduced rank into a cointegrating vector β and the adjustment coefficients

α to this cointegrating vector:

αβ′ = Π (7)

It then holds that β′Yt forms a stationary combination that describes the long-run dynamics

between the endogenous variables. The elements of α describe how the individual variables

adjust to this long-run relation.

Consider the case of three endogenous variables: Y1,t, Y2,t, Y3,t with a single lag in the CVAR

specification where I have assumed for illustration purposes the presence of a single cointegrating

relation (rank of Π = 1):∆Y1,t

∆Y2,t

∆Y3,t

 = Γ ·

∆Y1,t−1

∆Y2,t−1

∆Y3,t−1

+

α1

α2

α3

 · [β1 β2 β3

]
·

Y1,t−1Y2,t−1

Y3,t−1

+ εt (8)

The cointegrating relation is given by β′Yt−1 which is stationary. In equilibrium it holds that:

β′Yt−1 = (β1Y1,t−1 + β2Y2,t−1 + β3Y3,t−1) = 0 (9)

If the expression is not in equilibrium, β′Yt−1 6= 0, then this disequilibrium moves the variables

towards the new equilibrium through the adjustment coefficients α = (α1, α2, α3)
′.

4 Linking EBMs to Cointegration and Mapping to CVARs

I now show that the system of differential equations of the two-component EBM is equivalent to

a restricted cointegrated system and can be mapped to a restricted CVAR. The energy balance
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model in (4) and (5) can be expressed as

dTm
dt

=
1

Cm
[−λTm + F ] +

γ

Cm
[Tm − Td] (10)

dTd
dt

=
γ

Cd
[Tm − Td] (11)

with no explicit formulation given for the changes in radiative forcing dF
dt in the EBM. Let α

and β denote (p× r) matrices (where p = 3, r = 2) corresponding to:

α =


1
Cm

γ
Cm

0 γ

0 0

 and β′ = (β1, β2)
′ =

[
−λ 0 1

1 −1 0

]
(12)

Then the two-component EBM can be written as the following system:

dY = αβ′Ydt (13)

where Y = (Tm, Td, F )′, a (3× 1 vector).

Assuming stochastic processes (e.g. due to imperfect measurement and omitted variables)

the two component EBM can be written with a noise term v as an Ornstein-Uhlenbeck process

given by the stochastic differential equation:

dY = ΠYdt+ v (14)

= αβ′Ydt+ v (15)

where Π is a (p×p) matrix of reduced rank r = 2 such that Π = αβ′. The noise term v = DdW

captures omitted effects from the model, with D being a (p×p) matrix and W a p-dimensional

Brownian motion. The following analysis relies on the results in Kessler & Rahbek (2004) and

Kessler & Rahbek (2001).

The formulation of the stochastic two-component energy balance model then implies that,

if the continuous Ornstein-Uhlenbeck process is integrated of order one, I(1), the series in the

EBM cointegrate into two stationary relations given by β′Y with adjustment coefficients of

α. The physical stochastic two-component energy balance model is equivalent to a restricted

cointegrated system in continuous time in (16) and (17) where the expressions in brackets

correspond to the cointegrating vectors, and the coefficients outside the brackets are the α

adjustment coefficients in the cointegration model:

dTm
dt

=
1

Cm︸︷︷︸
α1,1

[−λTm + F ]︸ ︷︷ ︸
β′1Y

+
γ

Cm︸︷︷︸
α1,2

[Tm − Td]︸ ︷︷ ︸
β′2Y

+v1,t (16)

dTd
dt

=
γ

Cd︸︷︷︸
α2,2

[Tm − Td]︸ ︷︷ ︸
β′2Y

+v2,t (17)
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The energy balance model implies that the three variables of upper component temperatures,

lower component temperatures, and radiative forcing cointegrate into two stationary relations.

The first
(
β′1Y = [−λTm + F ]

)
, an equation linking upper component temperatures to radiative

forcing, describes the net heat flux (Q). The second
(
β′2Y = [Tm − Td]

)
is an equation describ-

ing the heat transfer between the upper and lower component. Upper component temperatures

adjust to both cointegrating vectors, lower component temperatures adjust to the second coin-

tegrating vector (α2,1 = 0), and radiative forcing is weakly exogenous (α3,1 = α3,2 = 0). Coin-

tegration between these variables is a testable property, and cointegration analysis can further

be used to estimate and conduct inference on the parameters α and β.

The differential equations describe the two-component energy balance model in continuous

time, while sampling happens at discrete intervals. Inference on cointegration and parameter

estimates in the continuous-time EBM can be conducted based on discrete observations using

the results in Kessler & Rahbek (2004).5 It is important to note though that the discretization

method moving from discrete to continuous time can have effects on the auto-correlation struc-

ture of the error term, and thus affect the statistical properties of the estimates (Sargan 1974).

Given the specification in equation (15) as an Ornstein-Uhlenbeck process, discrete observations

Yt of Y follow a VAR process as in equation (18):

Yt = AYt−1 + εt (18)

where εt ∼ N (0,Σ). The coefficient matrix A in the VAR in (18) equals the matrix exponential

of the coefficient matrix Π in equation (15), A = exp (Π). This result derives from solving the

Ornstein-Uhlenbeck process6 in equation (15) – see appendix 7.1. Let P = A− I, then (18) can

be written in equilibrium correction form as:

∆Yt = PYt + εt (19)

There is then a direct mapping of the EBM parameters from equation (15) to the parameters

in the discrete-time model (19). In particular, the coefficient matrix P in the CVAR relates to

the EBM parameters α, β as:

P = A− I = exp(Π)− I = exp
(
αβ′
)
− I = ακβ′ = α̃β′ (20)

where α̃ = ακ and the (r × r) matrix κ =
(
β′α
)−1 [

exp
(
β′α
)
− I
]
, see appendix 7.1 for a

proof. This mapping implies that the two-component continuous-time EBM can be tested and

estimated using a CVAR estimated on discrete observations: the rank of the coefficient matrix

of the discrete-time VAR model equals that of the EBM, rank(P) = rank(Π) = rank(αβ′), and

the matrix P̂ = ˆ̃αβ̂
′

yields estimates of the EBM parameters given by β′. The adjustment

coefficients α are not identified given that the CVAR parameters α̃ correspond to ακ. Thus,

restrictions in α are not directly preserved in the CVAR formulation. In other words, while

in the continuous time EBM the lower component temperatures Td do not adjust to the first

5In particular, Theorem 1 in Kessler & Rahbek (2004).
6Where for simplicity the frequency of observations is assumed to be equal to one.
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cointegrating vector, α2,1 = 0, this does not directly imply that the same holds for the discrete-

time CVAR, α̃2,1 6= 0. An intuitive explanation for this comes from the fact that at the discrete

time interval the lower component may adjust to the upper component given the feedback

between Tm and Td. The extent of this can be tested by assessing whether α̃2,1 equals zero

or not using CVAR estimates.7 One exception on restrictions linking α and α̃ occurs under

weak-exogeneity. The forcing series is assumed to be weakly-exogenous (not adjusting to the

cointegrating relations) in the EBM, thus α3,1 = α3,2 = 0. Given α̃ = ακ this implies that

α̃3,1 = α̃3,2 = 0, forcing should also be weakly exogenous in the CVAR formulation. Writing

the model (19) in matrix form we can formulate equations (16) and (17) as a discrete CVAR

where the CVAR parameters (given by α̃ and β) correspond to (combinations of) parameters

of the EBM: ∆Tm,t

∆Td,t

∆Ft

 =

α̃1,1

α̃2,1

α̃3,1

 · [β1,1 β1,2 β1,3

]
·

Tm,t−1Td,t−1

Ft−1

 (21)

+

α̃1,2

α̃2,2

α̃3,2

 · [β2,1 β2,2 β2,3

]
·

Tm,t−1Td,t−1

Ft−1

+ εt (22)

The cointegrating vectors and adjustment coefficients are linked to the continuous-time two-

component EBM such that: β1,1 = −λ, β1,2 = 0, β1,3 = 1, linking upper component tempera-

tures and radiative forcing in the first cointegrating relation; β2,1 = −β2,2 = 1, and β2,3 = 0,

linking upper component temperatures and lower component temperatures in the second coin-

tegrating relation; and α̃3,1 = α̃3,2 = 0, as forcing is assumed to adjust to neither cointegrating

relation. In matrix notation this can be expressed as:∆Tm,t

∆Td,t

∆Ft

 =

α̃1,1

α̃2,1

0

 · [−λ 0 1
]
·

Tm,t−1Td,t−1

Ft−1

 (23)

+

α̃1,2

α̃2,2

0

 · [1 −1 0
]
·

Tm,t−1Td,t−1

Ft−1

+ εt

This yields the discrete-time CVAR representation of the stochastic energy balance model and

can be estimated using standard CVAR methods.

4.1 Testable Properties implied by the EBM-CVAR mapping

The equivalence of a two component EBM and a CVAR provides direct restrictions which can be

tested against observations. Formally the EBM implies the following properties of the estimated

CVAR (6) which can then be tested:

1. rank(Π)=2: the time series cointegrate to two stationary relations, linking upper compo-

7Section 5 investigate this further.
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nent temperatures with radiative forcing, and lower component temperatures with upper

component temperatures (trace test).

2. Restrictions in (23) are not rejected (Likelihood ratio test).

3. Estimates for β (and α̃) are statistically different from zero, (Likelihood ratio tests) and

theory-consistent.

In particular, for the EBM to hold we require that the three series – upper component temper-

atures, lower component temperatures, and radiative forcing – cointegrate into two stationary

relations: The first, an equation linking upper component temperatures to radiative forcing,

describing the net heat flux (Q):

h1,t =
(
β1,1Tm,t−1 + β1,3Ft−1

)
(24)

where β1,1 = −λ, and β1,3 = 1. The second, an equation describing the heat transfer between

the upper and lower component:

h2,t =
(
β2,1Tm,t−1 + β2,2Td,t−1

)
(25)

where β2,1 = 1 = −β2,2. The order of cointegration, can be tested using the Johansen trace

test (Johansen 1988).

With respect to the physical structure between variables, this implies that any stochastic

trends present in the radiative forcing (where the stochastic component is driven by anthro-

pogenic emission of greenhouse gases from stochastic economic activity) will be imparted onto

the temperatures of the mixed component, through which it transfers onto the lower component.

This generalizes the results in Kaufmann et al. (2013) to the two-component EBM.

Notably, estimating a two-component EBM through a CVAR avoids potential hazards asso-

ciated with statistical and econometric climate models. The Johansen cointegration procedure

requires no pre-testing of individual series for the order integration (up to I(1)) and takes the

system nature of the model into account. The model also relies on the aggregate of radia-

tive forcing, rather than single series which, individually, may suffer from data measurement

problems.

The CVAR modelling approach provides the foundations for coupling empirical EBMs with

models of the macroeconomy by expanding the system in (6) using an explicit formulation for

the forcing series Ft. The forcing can be disaggregated into natural and anthropogenic factors,

where concentrations of greenhouse gases are modelled as the accumulation of emissions driven

by economic activity and social changes. Feedbacks of climate variables onto economic variables

can then be estimated in the CVAR formulation yielding estimates of damages and the social

cost of carbon.

4.2 Estimation using ocean heat content observations

The EBM characterises changes in temperatures while the data available for applications often

is a mixture of heat content and temperature observations. Given the availability of data, the
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application in section 5 uses ocean heat content (Ht) for the lower component and temperatures

for the upper component. This transformation yields a re-parametrised, but otherwise identical

EBM for estimation, where I use Ht ≈ CdTd,t, the re-parametrised EBM is given as:

∆Tm,t

∆H,t

∆Ft

 =

α̃1,1

α̃2,1

0

 · [−λ 0 1
]
·

Tm,t−1Ht−1

Ft−1

 (26)

+

α̃1,2

α̃2,2

0

 · [1 −1/Cd 0
]
·

Tm,t−1Ht−1

Ft−1

+ εt

To determine the cointegrating rank of the model, estimation includes an unrestricted con-

stant.8 If the rank equals two, then the first corresponding cointegrating vector is restricted

and given by:

h1,t =
(
β1,1Tm,t−1 + β1,3Ft−1

)
(27)

The second, a restricted equation for temperature changes in the lower component:

h2,t =
(
β2,1Tm,t−1 + β2,2Ht−1

)
(28)

For identification both cointegrating vectors are normalized such that β1,3 = 1 and β2,1 = 1.

The additional restrictions given by the EBM are: lower component temperatures do not enter

the first cointegrating vector, β1,2 = 0; radiative forcing does not enter the second cointegrating

vector, β2,3 = 0, and is weakly exogenous, α3,1 = α3,2 = 0 which implies that α̃3,1 = α̃3,2 = 0.

This is a simplification since some of the radiative forcing series are determined endogenously,

CO2 concentrations generally vary with temperatures as does ice-albedo. The weak exogeneity

assumption is relaxed in a simple extension of the model (see model C in Table 2) where an

aggregate of radiative forcing is modelled endogenously.

Every parameter in the cointegrating vector of the CVAR has a structural interpretation.

To estimate the model parameters of interest, it then holds that in the second cointegrating

vector (28) β2,2 = −1/Cd, providing an estimate of the heat capacity of the deep component.

The climate feedback parameter λ can be determined using β1,1 = −λ. Approximate standard

errors and confidence intervals can be derived using the asymptotic normality of the cointegrat-

ing parameters. In the case of parameters of interest being non-linear transformations of the

cointegrating estimates (such as −1/Cd = β1,1), I rely on the δ-method to provide approximate

standard errors.9 Based on these restrictions all EBM parameters in the approximation can be

identified and the over-identifying restrictions can be tested.

8This allows for potential linear trends in the data, but no deterministic trends in the cointegration relations
(see Hendry & Juselius 2001).

9Given an asymptotically normally distributed random variable X satisfying
√
n(X − µ)

D→ N
(
0, σ2

)
and a continuous function g(µ), using a Taylor-expansion we can approximate the distribution of g(X) by
√
n (g(X)− g(µ))

D→ N
(
0, σ2[g′(µ)]2

)
.
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5 Application

Here I estimate a CVAR as a simple test of the two-component EBM, and to obtain estimates

of the model parameters, notably estimated climate sensitivity to empirically determine the

response to a doubling of emissions, while accounting for the non-stationary nature of the

climate time series. Future work will extend the system to endogenously model forcing by

coupling the CVAR EBM to a model of macroeconomic time series.

5.1 Data

The upper/mixed component is specified as the atmosphere at the surface and temperatures

are taken as global mean surface temperature anomalies from the GISS dataset (Hansen et

al. 2010). The lower component is proxied by the ocean heat content anomalies from 0-700m

(Levitus et al. 2009). This is a crude approximation as it omits the deep ocean and will

therefore provide a high estimate of the adjustment speed of this component.10 The series

are graphed in Figure 1. Radiative forcing time series (Figure 2) are taken from Meinshausen

et al. (2011). The aggregate of the forcing used for the model includes well-mixed greenhouse

gases (WMGHGs)11 including CO2, stratospheric water vapour (Str. H2O), stratospheric ozone

(O3), black carbon, stratospheric aerosols, snow albedo changes, land use changes, indirect

aerosol effects and reflective aerosols. The short time period from 1955-2010 masks the dramatic

increase in radiative forcing stemming from WMGHGs since the late 19th century.

To directly estimate the parameters of the EBM here I rely on the aggregate of radiative

forcing. An extension could consider disaggregates by separating out volcanic forcing in the

form of stratospheric aerosols. Stern and Kaufmann (2014) test for links between individual

forcing series and surface temperatures, further work could focus on more detailed models using

individual forcing series found to be significant in Stern and Kaufmann (2014), while series

with little impact (e.g. black carbon) could be omitted. Few econometric models accounting for

non-stationarity in the form of stochastic trends also consider ocean heat content and thus the

heat transfer between the atmosphere/top component and the ocean. Stern (2006) is a notable

exception. Relative to Stern (2006) here I provide a direct link to the two component EBM and

estimate the system jointly as a CVAR.

Data availability for ocean heat content constrains the sample to a period from 1955 onwards.

The estimation period is then 1955-2011 at an annual frequency, resulting in T=56 observations.

This time period, together with the use of an aggregate of radiative forcing rather than individual

series, alleviates some concerns over measurement changes and the data quality of the radiative

forcing series (see Pretis and Hendry 2013).

While the time series properties of radiative forcing series are heavily debated in the econo-

metric literature (Kaufmann & Stern 2002, D. I. Stern & Kaufmann 2000, Beenstock et al.

2012, Pretis and Hendry 2013), the individual order of integration of these series is not directly

10Data for deeper ocean heat content for 0-2000m is available but only through pentadal averages (Levitus et
al. 2012).

11The major gases grouped together as WMGHGs include CO2, CH4, N2O, and SF6 (Sulfur hexafluoride)
and are combined due to their long lifetime and property that they are ”well-mixed” – concentrations are at
approximately the same level across the globe (Myhre et al., 2013).
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Figure 1: Left: Global mean surface temperatures in levels (top) and first differences (bottom).
Right: Ocean heat content from 0-700m in levels (top) and first differences (bottom).
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Figure 2: Radiative forcing from 1955-2011 in Wm−2. Panel A shows disaggregated forc-
ing, panel B shows the first difference of total forcing, panel C graphs first difference of total
forcing excluding stratospheric aerosol forcing from volcanic eruptions. Data obtained from
Meinshausen et al. (2011).
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relevant. Within the EBM formulation it is aggregate forcing that drives upper component

temperatures. On initial inspection it may appear inconsistent that global mean surface tem-

peratures are well approximated by an I(1) process while well-mixed greenhouse gases (in

particular) atmospheric CO2 concentrations can be argued to be I(2) (see appendix section 7.6

and above sources). However, jointly the individual forcing series sum (or cointegrate) to an

I(1) aggregate of forcing, where the I(1) cointegrating relation is given simply by the sum of the

individual forcing series. Given the same unit of measurement and the aggregate effect, forcings

are directly summable – this is a crucial oversight in the analysis of Beenstock et al. (2012) who

argue that, due to the different time series properties, temperatures and WMGHGs cannot be

related. While individual forcing series may be I(2) or I(0), aggregate forcing appears to be

consistent with an I(1) process, and thus exhibits approximately the same order of integration

as global mean surface temperatures.12

5.2 Model Specification

Determining the number of cointegrating relations and conducting inference on the estimated

parameters relies on well-specified models (Juselius 2006). While the theoretical EBM model

does not imply additional lags, the time series properties of the data may support a longer lag

length. To formally determine the lag structure I estimate a general unrestricted VAR starting

with three lags. Removing the third lag is not rejected (p = 0.08), while dropping both the

second and third lag is rejected (p = 0.003). The model with the lowest Schwarz criterion

(Schwarz 1978) includes just one lag (SC=3.28, relative to 3.45 for two, and 3.76 for three

lags). Assessing the diagnostic tests of the unrestricted models, a VAR(1) model rejects no-

residual autocorrelation (p=0.003), while a VAR(2) passes the residual vector autocorrelation

test (p=0.59) and dropping the second lag in the VAR(2) is rejected (p=0.005). Many discrete

approximations use the average of two periods which further provides a justification for the

use of two lags. Additional results on the dynamic stability and unit-root properties of the

estimated VAR models are provided in appendix 7.2.

I proceed by estimating four variations of the CVAR EBM model. First, model A is es-

timated with a single lag corresponding to the theoretical two-component EBM. While this

model is likely mis-specified and thus inference should be interpreted with care, it is included

as a comparison to show the estimates if just the theory model is estimated. Second, model

B includes two lags as suggested by the tests determining the lag structure. Once the restric-

tions implied by the EBM are imposed, both models A and B do not model forcing explicitly.

Nevertheless, some of the forcing series are not exogenous but rather may vary with observed

temperatures. Model C (estimated with 2 lags) relaxes the strong restrictions from model B by

allowing aggregate forcing to adjust to the first cointegrating relation. This changes the system

to three variables, however, no additional variables are included to explain forcing. In other

words, radiative forcing is modelled endogenously and is allowed to adjust to the first cointe-

grating vector (α̃3,1 6= 0). Further research could expand the EBM to disaggregate the forcing

12While not required by the Johansen methodology, for completeness univariate unit root tests are provided
in the appendix in section 7.6
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series and also incorporate a macroeconomic VAR to model the anthropogenic emissions, as

well as additional equations modelling natural variability (notably snow albedo changes).

An additional concern for residual autocorrelation are the time series properties of volcanic

forcing (stratospheric aerosols) which act more as structural breaks than continuous series and

may induce auto-correlation in the error terms. Therefore, a preliminary fourth specification,

reported as Model V (in appendix 7.4) provides an initial attempt at modelling a simple dis-

aggregate of the forcing series where volcanic aerosol forcing are modelled as breaks to avoid

concerns of estimating climate sensitivities based on volcanic forcing in general (see e.g Lindzen

& Giannitsis 1998). Only limited results are reported on model V as the precise modelling of

volcanic eruptions requires a detailed treatment exceeding the scope of this paper in which the

application to real data serves primarily as an illustration of estimating EBMs using CVARs.

In summary, model A corresponds directly to the EBM theory with a single lag, model

B is estimated with two lags to account for additional dynamics and residual autocorrelation,

model C is equivalent to model B with weak-exogeneity of the forcing series relaxed. Model V

in appendix 7.4 provides an initial attempt at accounting for break-like volcanic forcing. Full

results are reported for models A-C. Models are estimated using PcGive 14 (Doornik & Hendry

2013) and the Ox (Doornik 2009) programming language.

5.3 Results

The time series of global mean surface temperature anomalies, 0-700m ocean heat content

anomalies, and total radiative forcing cointegrate to two stationary relations consistent with

the theory of a two-component EBM. Likelihood ratio tests cannot reject the presence of two

cointegrating vectors (rank = 2) in all the models estimated here (pA=0.58, pB = pC = 0.76

for models A, B, C respectively), consistent with the theory provided by the two-component

EBM (1). A single cointegrating relation (rank=1) is rejected in all models (see Table 1 for full

results).13

Table 2 provides the estimated parameters of the CVAR. Fitted values are given in levels

in Figure 3 and first differences in Figure 4. Residual plots are provided in appendix 7.5.

The imposed restrictions on the CVAR are not rejected at the 1% level (p=0.02) in model

A (see Table 2), though this should be interpreted with care given the failure of the residual

autocorrelation mis-specification test of the model. The restrictions are, however, rejected in

model B which controls for residual autocorrelation. To explore the rejection of the restrictions,

model C relaxes weak-exogeneity of the forcing series. Taking into account the error serial

correlation through the extension of the model to two lags, the model restrictions are not rejected

in model C once forcing is allowed to adjust to upper component temperatures (p=0.32). This

is a notably strong result – it is not unusual for restrictions of this complexity to be rejected.14

For completeness, despite the rejection of the restrictions in model B and mis-specification in

A, the proceeding analysis reports results for all models A, B, and C.

13Future work will explore the effects of the small sample sizes using the bootstrap rank testing approach in
Cavaliere et al. 2012.

14Equally future work will explore the effects of the small sample sizes using the bootstrap hypotheses testing
approach in Cavaliere et al. 2014.
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Normality of the residuals cannot be rejected in diagnostic tests of the models A and B,

it is, however, rejected for model C. The rejection of normality in C likely stems from the

forcing series as indicated by the single-equation diagnostic tests – normality is not rejected

in all but the forcing series. This can be driven by the volcanic impacts resembling structural

breaks. Model V in (appendix 7.4), modelling volcanic forcing as breaks, shows improvements

in diagnostic test results (see also the residual plots in appendix 7.5) and the EBM restrictions

(including weak exogeneity of forcing) are then not rejected (p=0.17).

The estimated parameters of the EBM in the cointegrating relations are highly significant

and estimated with theory-consistent signs. There is little evidence that the ocean heat content

series adjusts to the first cointegrating vector (α̃2,1 is insignificant in Table 2).15 This is con-

sistent with the continuous-time EBM where the lower component only adjusts to the second

cointegrating relation in (17).The two cointegrating relations representing the equations of the

EBM are reported here as an example for the EBM theory model A:

ĥ1,t =

(
− 2.71

(0.51)∗∗
Tm,t−1 + Ft−1

)
(29)

ĥ2,t =

(
Tm,t−1 − 0.044

(0.003)∗∗
Ht−1

)
(30)

where standard errors are given in parentheses and the coefficients on Ft−1 in the first equation,

and the coefficient on Tm,t−1 in the second equation are normalized to 1 for identification.

Table 1: Cointegration Tests of the Two-Component EBM

A: Base, 1-lag B & C: 2-lag
Rank=0 61.52 [p <0.00]** 57.90 [p <0.00]**
Rank=1 20.35 [p <0.01]** 22.46 [p <0.01]**
Rank=2 0.31 [p=0.58] 0.09 [p=0.76]

Obs. 56 55

Cointegration rank tests using the Johansen (1988) trace
test. p-values are reported in brackets [ ], ∗ indicates rejec-
tion at 5%, ∗∗ indicates rejection at 1%.

15Further discussion of estimated model parameters is provided in appendix 7.3.
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Figure 3: EBM Model Fit (estimated as a CVAR). Left panels shows model fit and observed
(GIS) upper-component (global mean-surface) temperature anomalies. Right panels shows
model fit and observed 0-700m ocean heat content (OHC) anomalies (Levitus et al. 2009)
which proxy lower component heat content in the EBM.
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Figure 4: EBM Model Fit of First Differences (estimated as a CVAR). Left panels shows model
fit and observed first differences of (GIS) upper-component (global mean-surface) temperature
anomalies. Right panels shows model fit and first differences of observed 0-700m ocean heat
content anomalies (Levitus et al. 2009) which proxy lower component heat content in the EBM.

17



Table 2: EBM Cointegration Model Parameter Estimates where α̃ = ακ

EBM/CVAR Model

Coint. Relations A: Base B: 2-lag C: Endo. Forc.
Vector 1 (Mixed)

β1,1 -2.71 (0.51)** -2.29 (0.41)** -2.21 (0.32)**
β1,2 - - -
β1,3 1 1 1

Adjustment
α̃1,1 0.11 (0.03)** 0.15 (0.03)** 0.11 (0.03)**
α̃2,1 0.60 (0.33) 0.53 (0.38) -0.03 (0.41)
α̃3,1 - - -0.55 (0.15)**

Vector 2 (Deep)
β2,1 1 1 1
β2,2 -0.044 (0.003)** -0.041 (0.004)** -0.041 (0.004)**

Adjustment
α̃1,2 -0.41 (0.12)** -0.46 (0.15)** -0.47 (0.15)**
α̃2,2 7.82 (1.48)** 7.43 (1.99)** 7.35 (1.99)**
α̃3,2 - - -

LR Test of Restric.
χ2(2), C: χ2(1) 12.87 [p=0.012]* 16.32 [p=0.003]** 2.47 [p=0.12]

Diagnostic Tests
AR (1-2) F-Test 2.96 [p=0.005]** 1.32 [p=0.24] 1.14 [p=0.32]

Normality χ2(4), C: χ2(6) 0.76 [p=0.94] 7.19 [p=0.13] 20.36 [p=0.002]**
Observations T 56 55 55

log-likelihood -72.48 -59.85 -51.84

EBM Estimates
λ (Wm−2K−1) 2.71 (0.51) 2.29 (0.41) 2.21 (0.32)

ECS (K) 1.37 (0.25)† 1.62 (0.29)† 1.67 (0.24)†

Cm (W year m−2K−1) - - -

Cd (W year m−2K−1) 22.72 (1.54)† 24.39 (2.38)† 24.39 (2.38)†

γ - - -

Model estimates based on CVAR estimation. Standard errors are given in parentheses ( ) while
p-values are reported in brackets [ ]. Standard errors are provided where available. If no standard
errors are reported, then parameter is restricted or derived from estimated model parameters. ∗

indicates significance at 5%, ∗∗ indicates significance at 1%. Standard errors derived using δ-method
are marked using †. Left column specifies parameters, right columns shows estimation results. Dash
- marks imposed restriction and no identification in the case of the structural EBM parameters given
the theoretical result of α̃ = ακ.
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Figure 5: Net heat flux based on the first cointegrating vector and observed top of the atmo-
sphere (TOA) net flux. Top panel graphs the net heat flux as described by the estimated first
cointegrating vector for models A-C from 1955-2011. Bottom panel graphs the net flux from
2000-2011 together with annually averaged observed TOA net flux from the CERES Energy
Balanced and Filled (EBAF) all skies data (black line with points) (Loeb et al. 2009) which
have not been used to estimate the model and serve as an informal test of the model against a
different set of independently measured observations.

5.4 Discussion

5.4.1 Physical Interpretation of First Cointegrating Vector

Based on the EBM in (1) and the equivalent cointegration formulation (24), the first cointegrat-

ing relation used to estimate climate feedback has a direct physical interpretation and describes

the net heat flux or net energy coming into the system: Q = F − λTm. As an informal test

of the model I compare the estimated cointegrating vector which corresponds to estimated net

heat flux Q against the independently observed net heat flux from satellite-based measurements

of annually averaged net flux at the top of the atmosphere (TOA) from the CERES Energy

Balanced and Filled (EBAF) All Skies data (Loeb et al. 2009). It is important to emphasize

that this data series is not used in the estimation of the model but is a different set of observa-

tions from satellite measurements of the quantity captured by the first cointegrating relation.

Figure 5 plots the first cointegrating relation together with the satellite measurements. While

the models under-estimate the volatility and level slightly, the first cointegrating vectors from

models B and C remain close to the satellite-observed record. Model A, which does not con-

trol for residual autocorrelation (and results in high estimates of climate feedback – see section

5.4.2), consistently lies below satellite-observed TOA net flux.

5.4.2 Climate Feedback and Sensitivity

The system’s response to an increase in emissions is crucial for climate policy and assessment of

future damages. The estimates of the climate response to increasing emissions is characterised by
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climate feedback λ and the equilibrium climate sensitivity.16 Estimates of climate feedback and

equilbrium climate sensitivity (see Table 2) depend on the model specification, where model

mis-specification likely leads to an over-estimation of climate feedback (and thus an under-

estimation of climate sensitivity). Figure 6 plots the densities of estimated climate feedback (λ)

and sensitivity (ECS) relying on approximate asymptotic normality.17

Using model A which does not control for residual-autocorrelation, λ is estimated to be 2.71

(0.51) Wm−2K−1, equivalent to an equilibrium climate sensitivity of 1.37 (0.25) K for a radiative

forcing of 3.7Wm−2 for a step-shift doubling of CO2. This is lower than IPCC (IPCC 2013)

best estimates of around 3K. A possible reason for why climate feedback may have been over-

estimated (and ECS under-estimated) when using observation-based approaches (for example

Schwartz (2007) finds ECS for a doubling of CO2 to be approximately 1.1K) could be model

mis-specification (e.g apparent through residual autocorrelation) and stochastic trends in the

data which are not accounted for when relying on correlations and not estimating the system

as a whole. Equally, the standard errors are likely underestimated in the mis-specified models.

Once residual autocorrelation is corrected for through the use of additional lags (model B) the

estimates of climate feedback are lower (and those of ECS higher). Model B (two-lags) and

model C (endogenous forcing) estimate λ at 2.29 (0.41) and 2.21 (0.32) Wm−2K−1 respectively,

with associated equilibrium climate sensitivities of 1.62 (0.29) K and 1.67 (0.24) K. However,

this should be interpreted with care as the now endogenous forcing is modelled as a simple

aggregate.

There are concerns on estimating λ and ECS using volcanic forcing data (Lindzen & Gian-

nitsis 1998). Model V makes an initial attempt in correcting for this by treating volcanic forcing

as transitory breaks, entering the CVAR unrestrictedly in first differences. The climate feedback

estimate in model V is notably lower than in models A-C, resulting in a higher estimate of ECS

of 2.16 (0.56) K, however, associated with higher uncertainty (see Figure 6, model V, purple).

Overall, EBM estimates based on CVAR estimation show that the IPCC estimated range

of equilibrium climate sensitivities is robust to the non-stationary nature of the data at hand,

though at the higher end of the CVAR estimated distributions.

5.4.3 Stability and Time Dependence

Recursive Estimation The CVAR specification puts the entire econometric toolkit at the

disposal of estimated EBMs and enables the stability of the model to be assessed over time

using recursive estimation - I recursively estimate the model starting with a base sample of

20 observations from 1955-1976 onwards, expanding the sample up until 2011. This permits

an assessment of how the estimates would have changed over time and can provide insight

whether the recent slowdown in increase in surface temperatures – despite an increase in GHG

concentrations (the “warming hiatus”) – affects the estimates of the model parameters. Figure

16ECS for a doubling of CO2 is derived from the steady-state equilibrium of the EBM. Using (4) and (5) in
equilibrium it holds that dTm/dt = dTd/dt = 0 and thus Tm = F/λ. ECS is then defined as the equilibrium
temperature response Tm given a radiative forcing of doubling of CO2: ECS = F2×CO2/λ, where F2×CO2 ≈
3.7Wm−2.

17The results should be interpreted with care given the presence of residual autocorrelation in model A.

20



A

B

C

V

0.0

0.5

1.0

1.5

0 1 2 3 4 5
Climate Feedback: λ in Wm2K−1

D
en

si
ty

A

B

C

V

IPCC 'likely' Range

0.0

0.5

1.0

1.5

0 1 2 3 4 5
ECS in K

D
en

si
ty

Figure 6: Estimated densities of climate feedback (λ, left) and equilibrium climate sensitivity
(ECS, right), the equilibrium temperature response for a doubling of CO2 for models A (theory),
B (2-lags), and C (2-lags & endogenous forcing). Model V models volcanic forcing as breaks (see
appendix 7.4). Densities are plotted based on the asymptotic normality of the CVAR parameter
estimates. The IPCC “likely” range is denoted by vertical dashed lines in the right panel.

7 graphs the recursively estimated climate feedback and ECS over the sample period for the

different model specifications. Consistent with the findings of Otto et al. (2013) (who use a

single component EBM), the ECS and climate feedback are relatively stable over the sample

prior to 2003. Notably, there is a dip in the recursively estimated system following 2003, where

estimates including the time period thereafter yield a lower climate feedback and thus higher

ECS with overall higher uncertainty as indicated by the ± 2 standard error interval.18 This

change in 2003 could be driven by sudden increased ocean heat uptake during this time period

(see Figure 1).

The inclusion of the hiatus period (approximately from 1998 onwards), despite little increase

in surface temperatures, suggests that estimates of ECS are relatively stable over time. This is

likely driven by increased ocean heat uptake towards the end of the sample.

Ex-post ‘forecasting’ through the hiatus The cointegrated system model also provides a

basis for making ‘forecasts’ and counter-factual policy analysis. As an illustration, to further

investigate the performance and the stability of the EBM I re-estimate the models up until 1997

and forecast the remaining period (2011) 5-steps (years) ahead using the model estimates. While

forecast performance is not a directly useful model evaluation tool (Clements & Hendry 2005),

it can provide insights into model stability. The 5-step ‘forecasts’ used here rely on dynamic

forecasting in a closed system – next period’s forecast are used as starting points for succeeding

forecasts up to five steps ahead (see e.g. Clements & Hendry 1999). Figure 8 graphs the 5-step

‘forecasts’ of the temperature and ocean heat content anomalies. While the forecast intervals

are wide, the mean-level ‘forecast’ tracks observed temperatures and ocean heat content closely.

18The wide range of the ± 2 standard error interval for ECS in Figure 7 primarily stems from the non-linear
transformation of the climate feedback estimate λ̂. The estimate for λ in model B falls close to zero in 2001-2003
leading to very high values (and uncertainty) of ECS which is a non-linear transformation of λ.
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Figure 7: Recursive Estimates of Climate Feedback λ and Equilibrium Climate Sensitivity
(ECS). Top panel shows the recursively estimated climate feedback λ starting with a base
sample from 1956-1976 extended up to 1956-2011 for models A, B, and C. Bottom panel shows
the corresponding ECS for a radiative forcing of 3.7 Wm−2 for a doubling of CO2. Dashed lines
graph the interval ± 2 standard errors, where standard errors for ECS are derived using the
δ-method. While the ± 2 SE range is wide, the full sample 95% confidence interval is strictly
positive for both ECS and λ. The range of full-sample point-estimates is denoted by black bars
at the end of the sample.
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Figure 8: EBM/CVAR Model 5-Year Ahead Forecasts of Surface Temperature (left) and Ocean
Heat Content (right) during the Hiatus for models A, B, and C.

This is consistent with Kaufmann et al. (2011): changes in radiative forcing over this time

period together with ocean heat uptake can (in part) account for the slow down in warming.

However, it appears that ocean heat uptake is generally slightly under-predicted relative to a

model estimated prior to 1997. This may provide some evidence that increased ocean heat

uptake accounts for some of the “missing energy” recently debated (Trenberth & Fasullo 2010,

Trenberth & Fasullo 2012).

6 Conclusion

I demonstrate the mathematical equivalence of a two-component energy balance model to a

cointegrated system that can be mapped to a cointegrated vector autoregression. This result

provides directly testable properties of an energy balance model (EBM) when estimated on the

observational record, while accounting for non-stationarity in the form of stochastic trends in

the data. The equivalence result further provides a physical basis for the use of econometric

cointegrated vector autoregressions (CVAR) in climate research, and places the entire tool-

kit of CVARs at the disposal of energy balance models, ranging from tests of stability, to

forecasts. A simple application of econometric estimation of a two-component EBM using global

mean surface temperature anomalies, 0-700m ocean heat content anomalies, and aggregates of

radiative forcing suggests that the model is not rejected. The time series form two stationary

relations (cointegrate), consistent with the theoretical model and individual parameters are
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statistically significant with theory-consistent signs and magnitudes. CVAR estimation of a

two-component EBM shows that estimates of equilibrium climate sensitivity are relatively stable

over the sample of observations, where the recent slowdown in warming has little effect on the

estimated climate sensitivity. However, careful thought has to be given how the radiative forcing

series is modelled. Using the model parameter estimates, I find that model mis-specification

(e.g. apparent through residual autocorrelation) results in high values of the observationally

determined climate feedback, and in turn, to low estimates of equilibrium climate sensitivity.

This paper provides the foundation for the use of CVARs – which are commonly used to

model the macroeconomy – in estimating econometric models consistent with physical laws.

This will allow socio-economic models to be linked to climate models by estimating an entire

system where the forcing series are endogenized and driven by economic activity. The feasibility

of endogenously modelling a forcing series is demonstrated in Hendry & Pretis (2013). Using

econometric methods to identify shifts in models (see e.g. Castle et al. 2015, Pretis et al. 2015,

Pretis & Allen 2013) can then be used for an assessment of policy effectiveness and natural

shocks. A system model that is consistent with physical laws may also permit feedbacks of

temperatures and other climate variables onto the economy to be estimated as an alternative

to calibrated measures of future damages and the social cost of carbon. This opens the door to

data-driven models of interactions of the economy and climate.
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7 Appendix

7.1 Further Results on the Continuous to Discrete Mapping

The energy balance model is given as:

dY = ΠYdt+ DdW (31)

The solution to the Ornstein-Uhlenbeck process can be found using a change-of-variable ap-
proach. Define Z such that:

Z = exp (−Πt)Y (32)

where exp (−Πt) denotes the matrix exponential of −Πt, where for a n × n matrix A exp (A)
is defined as:

exp (A) =
∞∑
k=0

1

k!
Ak = I + A +

1

2!
A2 + . . . (33)

with the inverse of exp (A) given by exp (A)−1 = exp (−A). Pre-multiplying (32) by exp (Πt)−1

yields:

Y = exp (Πt)Z (34)

Using (32) we can write dZ as:

dZ = −Π exp (−Πt)Ydt+ exp (−Πt)dY (35)

= −Π exp (−Πt)Ydt+ exp (−Πt) (ΠYdt+ DdW) (36)

= exp (−Πt)DdW (37)

Integrating from 0 to t yields:

Z = Z0 +

∫ t

0
exp (−Πu)DdWu (38)

Substituting for Z in (34) provides the solution to the Ornstein-Uhlenbeck process as:

Y = exp (Πt)Y0 + exp (Πt)

∫ t

0
exp (−Πu)DdWu (39)

= exp (Πt)

(
Y0 +

∫ t

0
exp (−Πu)DdWu

)
(40)

Discrete observations Yt of Y at a frequency of one then follow a VAR process as:

Yt = AYt−1 + εt (41)

where A = exp (Π), and εt ∼ N (0,Σ) . In equilibrium-correction form, the VAR is written as:

∆Yt = PYt + εt (42)

with
P = A− I = exp(Π)− I = exp

(
αβ′
)
− I = ακβ′ (43)
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where κ is a (r × r) matrix κ =
(
β′α
)−1 [

exp
(
β′α
)
− I
]
. Proof:

P = exp
(
αβ′
)
− I

= I + αβ′ + αβ′αβ′
1

2!
+ · · · − I

= α

(
I + β′α

1

2!
+ . . .

)
β′

= α

((
β′α
)−1 [

β′α+ β′αβ′α
1

2!
+ . . .

])
β′

= α

((
β′α
)−1 [

I + β′α+ β′αβ′α
1

2!
+ · · · − I

])
β′

= α
((
β′α
)−1 [

exp
(
β′α
)
− I
])
β′ (44)

For additional results see Kessler & Rahbek (2004).

7.2 Eigenvalues of the Companion Matrix

To further assess dynamic stability, Table 3 reports the moduli of the eigenvalues of the com-
panion matrix of models A and B & C for the unrestricted VAR and reduced rank estimates
(r=2) without the EBM theory restrictions imposed. The indicative results of the eigenvalue
analysis suggest a single unit root: one eigenvalue lies on the unit circle, all other eigenvalues
are within the unit circle. There is no evidence of an explosive process and the system does not
appear to be I(2) – once a reduced rank of two is imposed, all other eigenvalues are well within
the unit circle.

Table 3: Eigenvalues of the companion matrix of models A and B & C for the unrestricted VAR
and reduced rank (r=2) estimates (without EBM theory restrictions).

Model A (1 × 3 roots)

VAR(1) 0.98 0.49 0.17
r=2 1.00 0.48 0.17

Models B & C (2 × 3 roots)

VAR(2) 1.00 0.65 0.65 0.40 0.40 0.07
r=2 1.00 0.64 0.64 0.40 0.40 0.07

7.3 Estimates of Component Heat Capacity

While the upper-component heat capacity Cm (the amount of energy needed to change the
temperature) is not directly identified in the discrete CVAR representation of the continuous-
time EBM, the heat capacity of the lower component can be estimated using the parameters in
the second cointegrating vector. The lower component heat capacity Cd is given by the CVAR
mapping as β2,2 = −1/Cd. Raw estimates of the heat capacity of the lower component using
observational data and a two-component EBM estimated as a CVAR from model A suggests an
effective ocean 0-700m heat capacity of 22.72 (2.70) W year m−2K−1. This increases to 24.39
(2.38) when two lags are considered (models B) and when we allow forcing to be endogenous
(Model C). Thus, when estimating the EBM as a system and taking the time series properties
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into account, the raw estimate is higher than found by Schwartz (2012), who finds the heat
capacity of the lower component up to 700m to be 14.1 W year m−2K−1 using OLS regression
and suggests that his finding is a strong under-estimation. We may still under-estimate the
total effective heat capacity of the system, mostly due to omission of the deeper ocean (>700m).
Equally, other heat sinks are omitted in this simple model. If we follow Schwartz’s approach
of correcting the 0-700m estimate upwards (by 30% for deeper ocean, and 19% for other heat
sinks), this yields an estimate of 36.34 W year m−2K−1 (using models B, C).

7.4 Modelling Volcanic Forcing as Breaks

Volcanic forcing (Ft,Volc.) closely resembles an impulse, where the first difference of volcanic
forcing (∆Ft,Volc.) appears similar to a transitory shock dummy e.g. (. . . , 0, 0, 1,−1, 0, 0, . . . ) –
see Figure 9 which plots the level and first difference of stratospheric aerosol (volcanic) forcing.
This break-like behaviour likely drives the rejection of normality in Model C in section 5. There
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Figure 9: Radiative forcing of stratospheric aerosols from volcanic eruptions in levels, Ft,Volc.

(left) and first differences ∆Ft,Volc. (right)

are multiple different ways in which volcanic forcing can be modelled within the CVAR speci-
fication. The aggregate forcing series Ft could be disaggregated and separated into exogenous
and endogenous forcing series, alternatively eruptions could be treated as transitory shocks.
Here I follow the latter approach, future work will explore the modelling of eruptions within
the CVAR in more detail.

Treating volcanic eruptions as closely resembling transitory breaks, I re-estimate the CVAR
EBM from section 5 with 2-lags, where the forcing series F̃t = Ft − Ft,Volc. enters the first
cointegrating relation, and is itself restricted to be weakly exogenous. The first difference of
volcanic forcing, ∆Ft,Volc. enters the model unrestrictedly, similar to a transitory shock dummy.

Table 4 provides the estimation results where model V refers to the model including the
first difference of volcanic forcing unrestrictedly. The model now passes the diagnostic tests
for residual autocorrelation (p=0.21) and normality (p=0.22). The EBM restrictions, including
weak-exogeneity of the remaining forcing series F̃t, are not rejected (p=0.17). The estimate
of ECS is notably higher relative to models A-C. Figure 6 in section 5 plots the approximate
density of ECS and λ when estimated using model V.
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Table 4: EBM Cointegration Model Parameter Estimates - Unrestricted Volcanic Forcing

EBM/CVAR Model

Coint. Relations V: Volc. Breaks
Vector 1 (Mixed)

β1,1 -1.71 (0.44)**
β1,2 -
β1,3 1

Adjustment
α̃1,1 0.21 (0.06)**
α̃2,1 0.09 (0.81)
α̃3,1 -

Vector 2 (Deep)
β2,1 1
β2,2 -0.042 (0.004)**

Adjustment
α̃1,2 -0.65 (0.17)**
α̃2,2 6.43 (2.04)**
α̃3,2 -

LR Test of Restric.
χ2(2), C: χ2(1) 6.49 [p=0.17]

Diagnostic Tests
AR (1-2) F-Test 1.37 [p=0.21]

Normality χ2(4), C: χ2(6) 5.75 [p=0.22]
Observations T 55

log-likelihood 84.11

EBM Estimates
λ (Wm−2K−1) 1.71 (0.44)

ECS (K) 2.16 (0.56)†

Cm (W year m−2K−1) -

Cd (W year m−2K−1) 23.8 (2.26)†

γ -

Model estimates based on CVAR estimation. Standard errors are given
in parentheses ( ) while p-values are reported in brackets [ ]. Stan-
dard errors are provided where available. If no standard errors are
reported, then parameter is restricted or derived from estimated model
parameters. ∗ indicates significance at 5%, ∗∗ indicates significance at
1%. Standard errors derived using δ-method are marked using †. Left
column specifies parameters, right columns shows estimation results.
Dash - marks imposed restriction and no identification in the case of
the structural EBM parameters given the theoretical result of α̃ = ακ.
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7.5 Residual Plots

Figure 10 plots the scaled model residuals from models A-C (see section 5) and model V (see
section 7.4). The outlying observations in 1981/1982 are associated with strong volcanic forcing
from the “El Chichón” eruption. Model V where volcanic forcing is modelled as transitory
breaks alleviates some of these problems.
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Figure 10: Scaled model residuals from models A-C (section 5) and model V (section 7.4)
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7.6 Univariate Unit Root Tests

While the Johansen cointegration procedure does not require pre-testing for unit-roots, for com-
pleteness I provide the results of uni-variate augmented Dickey-Fuller (ADF) (Dickey & Fuller
1981) unit root tests on both levels and first differences for global mean surface temperatures, 0-
700m ocean heat content, total radiative forcing, total radiative forcing excluding stratospheric
aerosols (volcanic forcing) and well-mixed greenhouse gases (WMGHGs). The null hypothesis
H0 is that the series has a unit root, rejecting H0 suggests no unit-root non-stationarity. D-lag
specifies the number of lags included in the ADF test where choice of lag length is based on the
lowest AIC. A constant is included in the ADF test specification. Test outcomes: ∗∗ indicates
rejection of H0 at 1% and ∗ at 5%.

Table 5: GIS Temperature ADF Unit Root Tests

GIS Temp. ∆ GIS Temp.

D-Lag t-adf AIC D-Lag t-adf AIC
3 -0.1707 -4.252 3 -4.329** -4.263
2 -0.5416 -4.229 2 -6.850** -4.291
1 -1.168 -4.161 1 -8.252** -4.262
0 -1.949 -4.1 0 -10.26** -4.172

Table 6: 0-700m OHC ADF Unit Root Tests

0-700m OHC ∆ 0-700m OHC

D-Lag t-adf AIC D-Lag t-adf AIC
3 1.02 0.6989 3 -3.065* 0.6295
2 0.8619 0.6704 2 -5.301** 0.6821
1 0.3142 0.7122 1 -7.107** 0.6468
0 -0.1528 0.7377 0 -9.019** 0.675

Table 7: Total Radiative Forcing ADF Unit Root Tests

Total Forcing ∆ Total Forcing

D-Lag t-adf AIC D-Lag t-adf AIC
3 -1.655 -1.476 3 -4.969** -1.446
2 -1.789 -1.515 2 -5.400** -1.457
1 -2.867 -1.454 1 -7.166** -1.488
0 -2.299 -1.422 0 -6.182** -1.335

33



Table 8: Total Forcing (excluding Stratospheric Aerosols) ADF Unit Root Tests

Total Forcing (excl. Str. Aerosols) ∆ Total Forcing (excl. Str. Aerosols)

D-Lag t-adf AIC D-Lag t-adf AIC
3 -0.5852 -6.789 3 -4.764** -6.917
2 -0.7223 -6.763 2 -3.794** -6.821
1 -0.7475 -6.801 1 -3.257* -6.791
0 -0.7114 -6.43 0 -3.543* -6.829

Table 9: Well-Mixed Greenhouse Gases (WMGHGs) ADF Unit Root Tests

WMGHGs ∆ WMGHGs

D-Lag t-adf AIC D-Lag t-adf AIC
3 -0.9117 -8.967 3 -1.793 -8.997
2 -0.6269 -8.902 2 -2.114 -8.989
1 -0.5831 -8.903 1 -2.898 -8.933
0 -0.6148 -8.619 0 -3.980** -8.935
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