HOW GOOD ARE U.S. GOVERNMENT FORECASTS OF THE FEDERAL DEBT?

Andrew B. Martinez

Number 727
October 2014
How Good Are U.S. Government Forecasts of the Federal Debt?

Andrew B. Martinez*†

October 12, 2014

Abstract

This paper compares annual one-year-ahead and five-year-ahead forecasts from government agencies for the U.S. gross federal debt and deficit from 1984 to 2013. Other studies have compared two of these agencies’ forecasts, but not for debt. The current paper finds that the forecast from the Analysis of the President’s Budget performs best across both horizons but does not encompass the other forecasts. Instead, each of the forecasts lacks information included by the other agencies and therefore a combination of all three outperforms any forecast individually.

JEL Classifications: C53, H68

Keywords: Evaluating Forecasts, Government Forecasting, Macroeconomic Forecasts, Forecast Encompassing, Deficit

* Department of Economics, and Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, UK. Email: andrew.martinez@economics.ox.ac.uk.
† All numerical results were obtained using PcGive Version 13.1 in OxMetrics Version 6.10: see Doornik and Hendry (2009). The author is grateful for helpful suggestions and comments from an associate editor and two referees, Michael Clements, Neil R. Ericsson, David F. Hendry, Frederick L. Joutz, Tara M. Sinclair, Herman O. Stekler, Peter A. Tinsley, Christopher Williams, and participants at the GWU Brown Bag Seminar Series on Forecasting, the 18th Federal Forecasters Conference, the Southern Economic Association 81st Annual Meetings, the 11th OxMetrics User Conference, and the 32nd Annual International Symposium on Forecasting Conference.
1. INTRODUCTION

In the aftermath of the recent financial and economic crisis, rapidly increasing government debt around the world has heightened worries about economic growth. In 2013, the U.S. total federal government debt outstanding was 99 percent of GDP, a share that had not been reached since World War II. U.S. government agencies have forecast that government debt will continue to rise. These forecasts have prompted concerns that the U.S. debt burden will become unsustainable; and actual debt and its forecasts have led to a national debate over the debt, the debt ceiling, and deficits.3

The intense focus on the U.S. federal debt makes it important to understand how well both the debt and the deficit are forecast. The available forecasts differ considerably, highlighting the need to know which forecast most closely tracks the trajectory of the debt. Both the short-term and the medium- to long-term forecasts are of interest, given concerns about the debt ceiling and about debt sustainability.

This paper aims at answering these questions on forecast performance. Using annual data since 1984, this paper compares the three different forecasts of the U.S. federal debt and deficit at both one-year-ahead and five-year-ahead horizons. The forecasts are denoted by their sources:

- CBO (Congressional Budget Office) from its Budget and Economic Outlook,
- OMB (Office of Management and Budget) from its Budget of the U.S. Government, and
- APB (Analysis of the President’s Budget).

The Congressional Budget Office and the Office of Management and Budget are different agencies within the U.S. federal government. The Analysis of the President’s Budget is produced by the Congressional Budget Office, but the forecasts in the Analysis of the President’s Budget embed different policy assumptions from the forecasts in the Budget and Economic Outlook. Thus, these two forecasts are referred to as the “APB forecast” and the “CBO forecast”, noting that both are produced by the Congressional Budget Office. Also, for expositional convenience, these three forecasts are referred to as “agency forecasts”, even though only two agencies are involved.

The current analysis adds to the previous literature in several ways. First and foremost, it extends comparisons of government agencies’ forecasts to include the federal debt. Second, it compares CBO, OMB, and APB forecasts against each other individually, and against averages of the agencies’ forecasts. Finally, the analysis uses both root mean square forecast errors (RMSE) and forecast-encompassing tests to compare the forecasts. These tools help assess whether certain forecasts can outperform other forecasts. The analysis finds that all of the short-term agency forecasts have relatively small forecast errors, except during recessions. It also finds value in examining debt forecasts separately from deficit forecasts. Furthermore, it shows that either the APB’s debt forecast or a combination of the agencies’ forecasts performs better than individual CBO and OMB debt forecasts.

In public discourse, discussion of the deficit often overshadows discussion of the federal debt, since the deficit is commonly thought of as equaling the change in debt. However, the deficit excludes certain items that contribute to the change in debt. Focusing on the deficit alone could miss significant components of debt. Therefore, it is important to examine the forecasts of the federal debt, which aggregates across multiple sources of debt, including the deficit.

Comparison of government agency forecasts is complicated because they condition on different economic and policy assumptions. The CBO assumes that current law will be unchanged, whereas the OMB and APB assume that the policy changes proposed in the president’s budget will be implemented. That said, analyzing these different forecasts relative to actual outcomes can give a sense of the degree of usefulness of the agencies’ forecasts. Also, as a linguistic matter, CBO refers to its forecasts of deficits and debt as “projections”, while OMB refers to them as “estimates”, and the APB publications typically call them “re-estimates”. The current paper uses the term “forecasts” throughout, drawing on the more encompassing usage given in Clements and Hendry (2002, p. 2): “A forecast is any statement about the future”.4

Poor performance—whether measured either as forecast non-encompassing or as a large RMSE—has both economic significance and statistical significance. That said, the particular meaning of “poor forecast performance” depends in part on whether an agency's forecasts are interpreted as “forecasts” or as “projections”, where “projections” are in the sense of being policy simulations conditional upon a certain set of assumptions. If the agency's forecasts are

4 See also Rasche (1985), who discusses the differences between projections and forecasts.
interpreted *qua* forecasts, then poor forecast performance implies potential room for improvement in terms of these performance measures. If the forecasts are interpreted *qua* projections, then poor forecast performance implies a limited usefulness of the forecasts as representing interesting hypothetical paths for economic policy.

In this analysis, poor forecast performance is interpreted in the latter sense. Therefore, in that context the overarching questions that this paper seeks to address are: which forecast represents the most useful path for economic policy and do any of the agency forecasts incorporate all of the relevant information such that the other agency forecasts are not useful?

This paper is structured as follows. Section 2 reviews the literature on comparisons of U.S. government agency forecasts. Section 3 provides a background to the forecast-encompassing tests used. Section 4 describes the data and some initial comparisons of the forecasts. Section 5 presents the empirical findings and analysis. Section 6 concludes.

2. LITERATURE REVIEW

A considerable body of literature compares U.S. government agency forecasts. These studies can be divided into two types. The first and more popular type typically uses summary statistics such as RMSE, mean absolute errors (MAE), and mean absolute percent errors (MAPE) to compare the agencies’ forecasts. The second type uses forecast-encompassing tests to compare the forecasts. Both types of studies provide valuable information about the forecasts.

Studies of the first type obtain a variety of results. Kamlet, Mowery, and Su (1987) compare one-year and multi-year-ahead forecasts from CBO, OMB, their own ARIMA model, and the ASA/NBER survey for the real growth rate, inflation rate, and unemployment from 1976 to 1984. They find that neither agency outperforms the other for short-term forecasts. However, for forecasts extending beyond three years, the authors find that OMB forecasts are more optimistic but not less accurate than CBO forecasts. Plesko (1988) examines the CBO and OMB forecasts of nominal GNP, current receipts, current outlays, and the deficit from 1974 to 1988 and finds similar results for the short-term forecasts.

McNees (1995) compares forecasts from the Federal Reserve Board (FRB), the CBO, the Council of Economic Advisors (CEA), and several private forecasters for inflation, GNP, and

5 The ASA/NBER survey is a survey of private forecasters that is conducted by the American Statistical Association and the National Bureau of Economic Research.
unemployment from 1976 to 1994. For long-term forecasts, McNees finds that the CEA is more optimistic than all of the other forecasters. Frendreis and Tatalovich (2000) compare CBO, OMB, and FRB one-year-ahead forecasts of GNP growth, inflation, and unemployment from 1979 to 1997. While all three agencies’ forecasts tend to be close, the authors find that CBO forecasts are the best, followed by the FRB, followed by OMB.

The CBO itself conducts a semi-annual comparison of its own forecasts with OMB and Blue Chip forecasts. The most recent update is CBO (2013), which compares two-year-ahead forecasts and five-year-ahead forecasts for output, inflation, three-month Treasury rates, long-term interest rates, and wage and salary disbursements from 1980 to 2010. Similar to previous studies, it finds that the CBO’s forecasts are as accurate as OMB and Blue Chip forecasts.

Studies of the second type use forecast-encompassing tests to compare forecasts; and those studies also obtain mixed results. Howard (1987) compares CBO and OMB forecasts of the real GNP growth rate, GNP deflator, consumer price index, unemployment rate, and the three-month Treasury bill rate from 1976 to 1985. By regressing the OMB’s forecast errors on a constant and the CBO’s forecast errors, Howard finds that the forecast errors are strongly correlated with each other and that the OMB forecasts are optimistically biased.

Belongia (1988) compares CEA, CBO, and ASA/NBER one-year-ahead forecasts of real GNP growth, the GNP deflator, and unemployment from 1976 to 1987. By regressing the actual growth rate of each variable on a constant and different pairs of predicted growth rates, Belongia finds that in general the ASA/NBER forecasts perform better than either the CBO or CEA, while neither CBO nor CEA outperform one another. These results suggest that CBO and CEA forecasts may be encompassed by ASA/NBER forecasts but do not encompass one another.

Cohen and Follette (2003) compare CBO, OMB, and FRB one-year-ahead forecasts of the budget deficit from 1977 to 2003. They regress the actual outcomes on OMB and CBO forecasts over different periods and find that, for most samples, CBO forecasts encompass OMB forecasts. Douglas and Krause (2005) also compare CBO, OMB, and FRB one-year-ahead forecasts of real and nominal GDP, inflation, unemployment, tax revenues, government outlays, and the budget deficit from 1976 to 2001. They use a variety of encompassing tests and find that,

6 CEA and OMB forecasts of the federal debt are identical. Thus, studies use one or the other to compare against the CBO. The private forecasters considered are the American Statistical Association (ASA), Data Resources Inc (DRI), and Blue Chip Economic Indicators.
with the exception of unemployment and tax revenues, the forecasts are not statistically
distinguishable from one another. They find that the FRB unemployment forecasts perform
better than those by either the CBO or the OMB, while the CBO tax-revenue forecasts perform
worse than those of either the OMB or the FRB.

Corder (2005) examines forecasts of GDP, inflation, unemployment, and interest rates
from the Social Security Administration (SSA), the CBO, and the OMB between 1976 and 2003.
Using two different tests to check for bias and efficiency, he finds that the CBO forecasts
encompass the OMB forecasts for GDP, OMB forecasts encompass the CBO forecasts for
unemployment and inflation, and neither encompasses the other for interest rates. He concludes
that the agencies could improve their forecasts if they incorporated information from each other.

Overall, both types of studies obtain mixed results. Some studies find that CBO forecasts
are significantly better than OMB forecasts, while other studies find that OMB forecasts are on
par with CBO forecasts. In a few instances, studies find that the OMB forecasts perform better
than the CBO forecasts. Table 1 summarizes the findings from previous studies.

In addition to the studies comparing government agencies’ forecasts, there is a
considerable body of literature that focuses on the performance of individual agency forecasts.
While these studies have a different focus than those that compare forecasts, they tend to use
similar methods. For instance, Kliesen and Thornton (2012) rely primarily on summary statistics
to examine how well CBO forecasts of the deficit have performed against a random walk model.
And, using an approach akin to a simple forecast-encompassing test, Frankel (2011) examines
potential biases in OMB forecasts of the deficit.

Standard forecast summary statistics and forecast-encompassing tests both have
limitations. Ericsson (1992) shows that, while a small MSE is a necessary condition for being the
better forecast, it is not sufficient for determining whether one forecast can explain another
forecast’s error (i.e., encompass it). Equally, CBO (2010) cautions against using statistical tests
with such small sample sizes because “particular errors can have an unduly large influence on
the measures” (p. 2). Thus, rather than relying on one test or another, the current analysis uses
RMSEs along with forecast-encompassing tests to compare government forecasts of debt and
deficits. By doing so, the risk of choosing a less powerful test is spread over a range of tests
while allowing for a comparison of the results across tests.
3. FORECAST-ENCOMPASSING TESTS

The analysis in this paper relies heavily on the concept of forecast encompassing, as developed by Chong and Hendry (1986). They propose a procedure for comparing two forecasts and seeing whether one of them is “sufficient” in a very specific statistical sense. Their basic framework, re-interpreted in the current context for comparing the three agency forecasts, is:

\[y_t = b_1 x_t + b_2 w_t + b_3 z_t + e_t, \]

where \(y_t \) denotes the actual value of the variable being forecast, \(x_t \) denotes the forecast from the first agency, \(w_t \) denotes the forecast from the second agency, \(z_t \) denotes the forecast from the third agency, and \(e_t \) is a residual.\(^7\)

Equation (1) defines a sharp testable hypothesis: \{\(b_1 = 1, b_2 = 0, b_3 = 0 \)\}. This null hypothesis holds if the first agency’s forecast provides an explanation of the dependent variable, with the second and third agencies’ forecasts offering no additional information to that explanation. The agencies’ roles can be reversed by testing \{\(b_1 = 0, b_2 = 1, b_3 = 0 \)\} or \{\(b_1 = 0, b_2 = 0, b_3 = 1 \)\}. See Bates and Granger (1969) for development of the related concept of the combination of forecasts.

Ericsson (1993) proposes a modification of (1), noting that if each forecast is cointegrated (+1:-1) with the variable being forecast, then \(b_1 + b_2 + b_3 = 1 \). Ericsson (1992) illustrates the desirability of accounting for that cointegration in forecast-encompassing tests. The resulting modified framework is:

\[(y_t - x_t) = b_4 (w_t - x_t) + b_5 (z_t - x_t) + e_t, \]

where \((y_t - x_t) \) is the first agency’s forecast error, and \((w_t - x_t) \) is the difference between the second and first agencies’ forecasts, while \((z_t - x_t) \) is the difference between the third and first agencies’ forecasts. That is, \((w_t - x_t) \) and \((z_t - x_t) \) measure the information present in the second and third agencies’ forecasts that is not present in the first agency’s forecast. Under this approach, the null hypothesis tested is \{\(b_4 = 0, b_5 = 0 \)\}. That is, assuming that the coefficients in (1) on the agencies’ forecasts sum to 1, the first agency’s forecast error is not explainable by its deviations from the other agencies’ forecasts. The roles of the three agencies can be reversed by testing the null hypothesis that \{\(b_4 = 1, b_5 = 0 \)\} or \{\(b_4 = 0, b_5 = 1 \)\} in (2).

Ericsson and Marquez (1993) observe that, in general, the framework in (1) implicitly assumes unbiased forecasts because (1) omits an intercept. By introducing an intercept in (1),

\(^7\) Similar approaches were used by Belongia (1988), Cohen and Follette (2003), Douglas and Krause (2005), and Corder (2005).
additional tests can be performed to examine whether the forecasts are biased.

These observations about (1) and (2) generate fifteen variants of the forecast-encompassing test. Specifically, for a triplet of forecasts, five different hypotheses about \{b_1, b_2, b_3, b_4, b_5\} are of particular interest:

(a) \(b_1 = 1, b_2 = 0 \text{ and } b_3 = 0\),
(b) \(b_2 = 0 \text{ and } b_3 = 0\),
(c) \(b_1 \equiv 1, b_2 = 0 \text{ and } b_3 = 0\),
(d) \(b_1+b_2+b_3 = 1, \text{ and}\)
(e) \(b_1+b_2+b_3 \equiv 1, b_4 = 0 \text{ and } b_5 = 0\).

In (c), “\(b_1 \equiv 1\)” indicates that \(b_1\) is constrained to unity, whether or not \(b_2\) and \(b_3\) are constrained to zero; and likewise for “\(b_1+b_2+b_3 \equiv 1\)” in (e). Tests of (a)-(c), (d) and (e) are adaptations of those proposed in Chong and Hendry (1986), Ericsson (1993), and Ericsson (1992) respectively.

Additionally, three different hypotheses about the intercept (denoted \(b_0\)) can be tested:

(i) an intercept is included in (1) and is left unrestricted (“\(b_0 \text{ unrestricted}\”),
(ii) an intercept is included in (1) but is set to zero (“\(b_0 = 0\)” when any of (a)-(e) is imposed, and
(iii) an intercept is not included in (1) (“\(b_0 \equiv 0\)”).

The hypotheses in (a)-(e), in combination with those in (i)-(iii), generate fifteen variants of the forecast-encompassing test, where each variant differs in its assumptions about \{\(b_0, b_1, b_2, b_3, b_4, b_5\}\) under the null hypothesis of forecast encompassing and under the alternative hypothesis of a lack of forecast encompassing. Each variant thus has implications for the size and power of the statistical test. As a group, these variants provide a comprehensive view of whether one set of forecasts is able to explain the actual outcomes better than another set of forecasts. Because a nonzero intercept reflects systematic bias, the analysis below focuses on variants involving (ii).

4. DATA SOURCES, DESCRIPTION, AND SUMMARY STATISTICS

This section describes the data and provides some visual comparisons of the forecasts. The primary variable of interest is the total U.S. gross federal debt outstanding in billions of dollars from 1984 to 2013 (“DEBT”). The analysis in this paper also examines the U.S. federal deficit (“DEFICIT”). The data for both DEBT and DEFICIT are published by the U.S. Department of Treasury’s Financial Management Service in the December issue of the Treasury Bulletin and are measured on a fiscal year basis ending on September 30th.
In public discourse, discussion of the deficit often overshadows discussion of the federal debt, since the deficit is commonly thought of as equaling the change in debt. However, the deficit and the change in debt are not in fact equal. The deficit excludes certain items that contribute to the change in debt: the Troubled Asset Relief Program (TARP) and changes in cash balances held by the Treasury are examples of such items. Inclusion or exclusion of such items can significantly alter the measure of debt calculated. And, the CBO and OMB debt forecasts and their relative merits depend on which measure of debt is used. For example, the difference between the CBO and OMB debt forecasts in 2009 was largely due to differences in the forecasts of the change in financial assets and liabilities in response to the financial crisis; see Table 1. Furthermore, the gross federal debt is a closer measure of the debt subject to the debt ceiling than debt held by the public. Therefore, it is important to examine the forecasts of the federal debt, which aggregates across multiple sources of debt, including the deficit. Focusing on the deficit alone could miss significant components of debt.

The forecasts examined are one-year-ahead (h=1) and five-year-ahead (h=5) forecasts of the federal debt and deficit. These forecasts span 1984-2013 and appear in annual releases of the CBO’s Budget and Economic Outlook, the OMB’s Budget of the United States Government, and the CBO’s Analysis of the President’s Budget. The forecasts are denoted CBO, OMB, and APB respectively. They are released at the beginning of the year, usually about a month apart (see Table 3) between January and March; and are of the level of U.S. federal debt and deficit at the end of the (then) current fiscal year and of future fiscal years. Thus, the forecasts are not precisely one-year-ahead and five-year-ahead, but for ease of reference they will be referred to as such. See Figure 1 for an illustrative timeline, and Martinez (2011, Table 2) for specific dates.

Figure 1: Illustrative Timeline of CBO, OMB, and APB Forecasts

8 Although gross federal debt is not exactly the same as the debt subject to limit as debt subject to limit excludes most debt issued by agencies other than the Treasury and the Federal Financing Bank. The difference between the two measures was $17 billion in 2013 and has averaged about $30 billion since 1990.
It is important to emphasize that these agency forecasts are conditioned on different policy assumptions. The CBO forecasts assume that current law will be unchanged over the forecast horizon, whereas the OMB and APB forecasts assume that the policy changes proposed in the president’s budget will be implemented. In this sense, the forecasts can be viewed more as different policy scenarios rather than true unconditional forecasts. However, it is still of interest to determine how useful these different policy scenarios are (both relatively and absolutely) and whether any of these scenarios incorporate all of the relevant information available in the other scenarios, especially with the prominence they are given in policy debates and decisions. For more information on the forecasts and their assumptions, see Martinez (2011).

In the current analysis, the forecasts of primary interest are the CBO, OMB, and APB one-year-ahead and five-year-ahead forecasts of the federal debt and deficit. Figure 2 plots the logs of the debt forecasts and of the actual debt to provide an initial view of how much the debt has grown over the past 30 years and how the one-year-ahead and the five-year-ahead forecasts perform. Figure 3 plots the debt forecast errors, which were generated by subtracting the logs of the forecasts from the log of the actual debt. Figure 4 plots the deficit forecasts and actual values while Figure 5 plots the deficit forecast errors. The largest errors for one-year-ahead debt and deficit forecasts were in 1990, 2001, 2002, 2008, 2009, 2011 and 2013. In each of these years the U.S. was either entering a recession or an expansion (according to the NBER), or there were major policy changes. On the other hand, the five-year-ahead forecasts of debt and deficit exhibit large and prolonged errors that imply under-prediction, except for a brief period of over-prediction from 1995-2001.

For further comparison, the analysis below includes an average of the logs of the OMB and CBO forecasts (AVE1), an average of the logs of the OMB and APB forecasts (AVE2), an average of the logs of the CBO and APB forecasts (AVE3), and an average of the logs of all three agency forecasts (AVE4). Comparing the individual agency forecasts with their averages provides an additional assessment of whether a simple combination of the forecasts incorporates all the relevant information in the individual agency forecasts. For details of the data series and their sources, see Table 4.

Estimated forecast biases, error variances, and the RMSEs provide further insight into the relative performance of the forecasts. Table 5 reports these summary statistics for the three agency one-year-ahead debt forecasts and for the forecasts from a random walk model, including
over various subsamples. A negative bias indicates systematic over-prediction. For all subsamples, the agencies’ forecasts perform better than forecasts from a random walk model. For the subsample through 2008, the RMSE for OMB is smaller than that for CBO; but the converse holds for subsamples ending in 2009 through 2013. However, regardless of which subsample is chosen, the APB forecasts outperform both the CBO and OMB forecasts in terms of bias, error variance, and RMSE. These same results hold for the one-year-ahead deficit forecasts, except that APB performs worse than CBO for subsamples ending in 2009 or later.

Table 6 summarizes properties of the five-year-ahead debt forecasts. The agencies’ forecasts continue to outperform the random-walk forecasts, while OMB performs better than CBO. APB also continues to outperform both OMB and CBO across all subsamples.9

None of the agencies’ five-year-ahead deficit forecasts outperform the random walk forecasts. In fact, Kliesen and Thornton (2012) find that CBO deficit forecasts fail to outperform random walk forecasts at a two-year-ahead forecast horizon. This preliminary analysis suggests that, while the agency forecasts perform well relative to a random-walk forecast, the relative performance depends in general on the variable, the sample, and the forecast horizon.

5. ANALYSIS AND RESULTS

Forecast-encompassing tests provide an alternative method for comparing forecasts. The analysis below initially examines one-year-ahead forecasts of debt. The analysis is then extended to five-year-ahead debt forecasts, and to one-year-ahead and five-year-ahead deficit forecasts. The results show that each agency’s forecast of the debt is incomplete and therefore a combination of the agencies’ forecasts performs better than the individual agency forecasts.

Generalizing on equation (1) to include an intercept, the baseline regression for the forecast-encompassing tests is obtained by regressing actual debt on an intercept and the CBO, OMB, and APB forecasts:

\[
\text{debt} = -0.069 - 0.13\text{cbo} - 1.01\text{omb} + 2.15\text{apb},
\]

as appears in Table 7 (regression #1). Lowercase variables denote the logs of uppercase variables, estimated standard errors are in parentheses, and the sample period is 1984-2013. The

9 Performance also depends on which naive forecast is used. A simple robust forecasting device of the double difference of debt performs much more in line with the agency forecasts of debt in terms of the RMSE at both horizons. Furthermore, for the full sample through 2013 it outperforms the CBO’s five-year-ahead debt forecast.
coefficients suggest that double the weight should be given to the APB forecast, whereas the coefficient for the CBO forecast is not statistically significant, and a negative weight should be given to OMB, suggesting that one should move in the opposite direction as the OMB forecast given the APB forecast.

Now consider the five null hypotheses in (a)-(e) above, as applied to equation (3). Implicit throughout the discussion below, the intercept is also being tested to be zero as in (ii) above (i.e., $b_0 = 0$).

The first null hypothesis is (a), which is $\{b_{CBO}=1, b_{OMB}=0, b_{APB}=0\}$, where $b_{CBO}, b_{OMB},$ and b_{APB} are the coefficients on cbo, omb and apb respectively in equation (3). A test of this hypothesis examines whether the CBO forecast explains the debt, with the OMB and the APB forecasts providing no additional explanatory information. If that null hypothesis is not rejected, then the CBO forecast encompasses the OMB and APB forecasts. In (3), this null hypothesis is strongly rejected, with an F-statistic of 8.04 and a p-value of less than 0.1 percent. This outcome is reported as the upper left “triplet” of numbers in the first major row of Table 9, with the parenthetical elements in the triplet specifying the degrees of freedom for the F-statistic: (4,26).

The second null hypothesis is (b), which is $\{b_{OMB}=0, b_{APB}=0\}$. This hypothesis is a slightly weaker version of (a) and focuses on whether the APB and OMB forecasts provide any additional information over and above that provided by the CBO forecast. The null hypothesis (b) is also strongly rejected, with an F-statistic of 10.45 and a p-value of less than 0.1 percent.

The third null hypothesis is (c), which is $\{b_{CBO}=1, b_{OMB}=0, b_{APB}=0\}$. This hypothesis focuses on whether the OMB and APB forecasts help explain the CBO’s forecast error. The null hypothesis (c) is not rejected, with an F-statistic of 0.43 and a p-value of 73.6 percent. The rejection of (a) and (b) is not surprising given the regression coefficients in (3) and implies that CBO does not encompass the OMB and APB forecasts. Whereas the failure to reject (c) implies that the other agencies’ forecasts cannot explain CBO’s forecast errors.

The fourth null hypothesis is (d), which is $\{b_{CBO}+b_{OMB}+b_{APB}=1\}$. If this hypothesis holds, then the sum of the coefficients on the OMB and CBO forecasts in (3) equals unity. The null hypothesis (d) is not rejected (see Table 7, regression #2): the F-statistic of 1.33, with a p-value of 28.1 percent. The homogeneity restriction in (d) allows rewriting equation (1) as equation (2), which leads to examining hypothesis (e).
The fifth null hypothesis is (e), which is \(\{b_{CBO}+b_{OMB}+b_{APB}=1, b_4=0, b_5=0\} \) and so conditions on the hypothesis tested in (d). This hypothesis can be examined by estimating equation (2) with an unrestricted intercept. Letting \(x_t \) be the CBO forecast, \(w_t \) be the OMB forecast, and \(z_t \) be the APB forecast, then the estimated equation for (e) is:

\[
(debt - cbo) = -0.0012 - 0.67*(omb-cbo) + 1.79*(apb-cbo).
\]

As discussed in Section 3, testing \(\{b_4=0, b_5=0\} \) in (2) corresponds to testing whether the coefficients on (omb-cbo) and (apb-cbo) are zero in (4). That is, do discrepancies between the OMB and CBO forecasts and discrepancies between the APB and CBO forecasts help explain CBO forecast errors? The null hypothesis (e) is strongly rejected, with an F-statistic of 9.39 and a p-value of less than 0.1 percent (Table 9). Thus, the difference between OMB and CBO forecasts and the difference between APB and CBO forecasts helps explain CBO forecast errors.

The results with the OMB as the reference forecast are reported in the second major row in Table 9. Specifically, equation (3) can be used to test whether the OMB forecasts encompass the CBO forecasts, simply by swapping the coefficients on which the hypotheses are tested. Thus, the new null hypothesis for (a) is \(\{b_{CBO}=0, b_{OMB}=1, b_{APB}=0\} \), which examines whether OMB’s forecasts explain the debt, with CBO and APB providing no additional explanatory information. The null hypothesis is strongly rejected: the F-statistic is 17.89, with a p-value of less than 0.1 percent. The new hypotheses for (b) and (c) are \(\{b_{CBO}=0, b_{APB}=0\} \) and \(\{b_{OMB}=1, b_{CBO}=0, b_{APB}=0\} \) respectively: both hypotheses are strongly rejected. The new hypothesis for (d) is identical to the hypothesis reported in Table 7 for equation #1. The new null hypothesis for (e) corresponds to testing that \(\{b_4=1, b_5=0\} \) in (2), which means testing that the coefficient on (omb-cbo) is unity and the coefficient on (apb-cbo) is zero in (4). This hypothesis is strongly rejected. Thus, the OMB forecasts do not encompass the CBO and APB forecasts as they provide information that can be incorporated into the OMB forecasts.

The results for APB as the reference forecast are reported in the third major row in Table 9. The test statistics show that the APB forecast does not encompass the CBO and OMB forecasts: three of the four null hypotheses are rejected at the 5 percent level. These results stand in contrast to the finding that APB has the lowest RMSE of the three agency forecasts at 1.46%.

The contrast between the RMSE ranking and the forecast-encompassing tests can be understood by rewriting equation (4) with APB as the reference forecast:
(debt – apb) = - 0.0012 - 0.12*(cbo-apb) - 0.67*(omb-apb). \hspace{1cm} (5)

(0.0026) (0.21) \hspace{1cm} (0.27)

In equation (5), sigma is 1.30%, whereas the RMSE for APB is a considerably larger 1.46%. The CBO and OMB forecasts thus explain about 10% of the APB’s RMSE. While APB has the smallest RMSE among the individual agency forecasts, it still lacks some relevant information available from the other agencies’ forecasts. This empirical result reflects the theoretical finding in Ericsson (1992) that dominance in RMSE is necessary but not sufficient for forecast encompassing.

In equation (5), the negative coefficient on (omb-apb) implies forecast improvement by moving away from the OMB forecast, relative to the APB forecast. That result is also reflected in equation (3), where the OMB forecast has a negative coefficient and the APB forecast has a coefficient that is greater than unity. Because APB often performs well among the individual agency forecasts, APB is used as the reference forecast in Tables 7 and 8 for regressions of the form in equation (2).

The results using each forecast average as the reference forecast are displayed in the remaining major rows in Table 9. None of these forecast averages fully encompass the individual agencies’ forecasts. In other words, simple averages of the agency forecasts fail to incorporate all of the relevant information available from the agencies’ forecasts themselves. That said, AVE3 has the smallest RMSE of the forecast averages considered, and AVE3’s RMSE is equal to that of the APB.

All of the above mentioned results were obtained with the intercept restricted to equal zero under the null hypothesis. The results are robust to the treatment of the intercept, to changes in the sample, and to the removal of years with large forecast errors; see Martinez (2011).

The results do change when the analysis is extended to longer forecast horizons. The right-hand panel in Table 9 presents the results of the five-year-ahead debt forecasts and shows that most of the agencies’ forecasts and their averages encompass one another, albeit with some evidence suggesting that CBO does not encompass the other agencies’ forecasts. APB has the lowest RMSE at 15.34%, of which the CBO and OMB forecasts can explain 7% (see Table 8, equation 2).

The results also change when extended to the deficit. Table 10 shows that none of the agencies’ deficit forecasts or their averages encompasses the others at either forecast horizon.
However, when leaving the intercept unrestricted at the five-year-ahead forecast horizon (not shown), all of the forecasts encompass one another with some evidence suggesting that CBO does not encompass the other agencies’ forecasts. AVE3 has the lowest RMSE for the one-year-ahead forecasts, while APB has the lowest RMSE for the five-year-ahead forecasts.

The findings in this paper show that, at both short and long horizons, a combination of agencies’ forecasts is better at explaining the debt than any of the forecasts individually, suggesting that a combination of the forecasts is more robust to changes in the economy than the individual agency forecasts. This is supported by the theoretical analysis in Clements and Hendry (2004), which shows that pooling forecasts can add value when individual forecasting models are differentially mis-specified. Furthermore, Hendry and Mizon (2005) illustrate that pooling across models may be beneficial in forecasting when there are structural breaks or policy regime shifts. The weaknesses of individual forecasts may thus be ameliorated by combining forecasts.

There are several potential explanations for why the individual agency debt forecasts may be differentially mis-specified. First, different agencies release their forecasts on different dates. So, a forecast with a later release date (typically APB) may incorporate newer information. Even a small difference in release dates could have a significant effect at the onset of a recession or in the midst of large economic and policy changes. Second, as mentioned earlier, the agencies condition their forecasts on different assumptions. These different assumptions could lead to large differences in the forecasts, especially when policies are changing rapidly. While a determination of which specific characteristics of the agencies’ forecasts lead to their divergence is beyond the scope of this analysis, a combination of the forecasts can reduce susceptibility to changes in policies or in the economy.

6. CONCLUSIONS

This paper compares three decades of one-year-ahead and five-year-ahead forecasts for U.S. federal debt and deficits from the Congressional Budget Office and the Office of Management and Budget. Summary statistics and forecast-encompassing tests lead to consistent and robust conclusions. Overall, the agency forecasts perform better than a simple benchmark forecast model. At the one-year-ahead forecast horizon, the APB forecasts outperform the CBO and OMB forecasts in terms of the RMSEs (for the debt but not the deficit). This is not particularly surprising given APB’s later release date and therefore potential information advantage. However, APB forecasts are unable to fully forecast-encompass the CBO and OMB
(both deficit and debt). At the five-year-ahead forecast horizon, the APB performs best in terms of the RMSEs, but is still unable to encompass the CBO and OMB forecasts. This suggests that additional information from the other agencies’ forecasts is useful at both horizons.

Each of the agency forecasts is relatively successful in forecasting the debt and deficit. That said, in both the short term and the medium term, each agency forecast of the federal debt remains incomplete and could benefit from information that the other agency forecasts take into account. When only one agency’s forecast is used, there is an incomplete and potentially distorted picture of the future levels of and changes in federal debt.

The APB forecast behaves somewhat like a quasi-combination of the OMB and CBO forecasts, and the evidence suggests that the APB forecast outperforms the other agency debt forecasts at both horizons. However, despite being released as much as several months after the CBO and the OMB forecasts, the APB forecast still lacks information that the other agency forecasts take into account. Utilization of information from each of the agencies’ forecasts provides a more complete picture of the future trajectory of the U.S. federal debt.
REFERENCES

Table 1. Previous Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Forecasters</th>
<th>Variables</th>
<th>Horizon</th>
<th>Sample</th>
<th>Summary of Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Howard (1987)</td>
<td>CBO, OMB</td>
<td>real GNP growth rate, GNP deflator, CPI, unemployment, Treasury rates</td>
<td>Short</td>
<td>1976-1985</td>
<td>OMB forecasts are optimistic</td>
</tr>
<tr>
<td>Plesko (1988)</td>
<td>CBO, OMB</td>
<td>nominal GDP, revenues, outlays</td>
<td>Short, long</td>
<td>1974-1988</td>
<td>OMB and CBO perform equally well (short and long)</td>
</tr>
<tr>
<td>Frendreis and Tatalovich (2000)</td>
<td>CBO, OMB, FRB</td>
<td>GNP growth, inflation, unemployment</td>
<td>Short</td>
<td>1979-1997</td>
<td>CBO best, followed by FRB, then OMB</td>
</tr>
<tr>
<td>Corder (2005)</td>
<td>CBO, OMB, SSA</td>
<td>GDP, inflation, unemployment, interest rates</td>
<td>Short, long</td>
<td>1976-2003</td>
<td>CBO better for GDP, OMB better for unemployment, neither for interest rates (long)</td>
</tr>
<tr>
<td>CBO (2013)</td>
<td>CBO, OMB, Blue Chip</td>
<td>output, inflation, Treasury rates, long-term interest rates, wage and salary disbursements</td>
<td>Short, long</td>
<td>1982-2010</td>
<td>CBO and OMB perform equally well (short and long)</td>
</tr>
</tbody>
</table>
Table 2. Comparisons of Actual Debt and Forecasts of Debt from CBO and OMB for 2009 (billions of $)

<table>
<thead>
<tr>
<th>Budget Item</th>
<th>Actual</th>
<th>CBO</th>
<th>OMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in public debt</td>
<td>1,741.7</td>
<td>1,390.0</td>
<td>2,728.7</td>
</tr>
<tr>
<td>Deficit</td>
<td>1,412.7</td>
<td>1,186.0</td>
<td>1,841.2</td>
</tr>
<tr>
<td>Changes in Financial Assets and Liabilities</td>
<td>329.0</td>
<td>204.0</td>
<td>887.5</td>
</tr>
<tr>
<td>Change in cash balances</td>
<td>-96.3</td>
<td>-297.0</td>
<td>-301.6</td>
</tr>
<tr>
<td>TARP</td>
<td>105.4</td>
<td>461.0</td>
<td>166.4</td>
</tr>
<tr>
<td>Other</td>
<td>319.9</td>
<td>40.0</td>
<td>1,022.7</td>
</tr>
<tr>
<td>Change in debt held by the government</td>
<td>148.1</td>
<td>153.0</td>
<td>153.1</td>
</tr>
<tr>
<td>Change in agency-issued debt</td>
<td>-0.3</td>
<td>1.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>Total (i.e., change in the federal debt)</td>
<td>1,889.5</td>
<td>1,544.0</td>
<td>2,881.6</td>
</tr>
</tbody>
</table>

Notes:
1. The change in debt held by the public is the sum of the deficit and “other”.
2. Other changes in financial assets and liabilities include direct loans and guaranteed loans, purchases of mortgage backed securities and additional financing accounts for “potential additional financial stabilization efforts”.
3. The change in federal debt is the sum of changes to public debt, debt held by the government, and agency-issued debt.
4. OMB values come from the OMB’s February 2009 publication *Budget of the U.S. Government Fiscal Year 2010*.
5. CBO values come from the CBO’s January 2009 publication *Budget and Economic Outlook: Fiscal Years 2009 – 2019*.
6. Actual values come from the OMB’s February 2010 publication *Budget of the U.S. Government Fiscal Year 2011*.

Table 3. Differences in forecast release dates (in number of days, 1984-2013)

<table>
<thead>
<tr>
<th></th>
<th>OMB relative to CBO</th>
<th>APB relative to OMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>17</td>
<td>36</td>
</tr>
<tr>
<td>Median</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>Max</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>Min</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 4. Variables (in $ billions, 1984-2013)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBT</td>
<td>Annual value of the gross federal debt outstanding (held by public and intra-governmental holdings).</td>
<td>Financial Management Service</td>
</tr>
<tr>
<td>DEFICIT</td>
<td>Annual value of the federal deficit</td>
<td>Financial Management Service</td>
</tr>
<tr>
<td>CBO</td>
<td>Annual one-year-ahead and five-year-ahead forecasts of the debt and deficit from CBO.</td>
<td>Congressional Budget Office</td>
</tr>
<tr>
<td>OMB</td>
<td>Annual one-year-ahead and five-year-ahead forecasts of the debt and deficit from OMB.</td>
<td>Office of Management and Budget</td>
</tr>
<tr>
<td>APB</td>
<td>Annual one-year-ahead and five-year-ahead forecasts of the debt and deficit from CBO’s Analysis of the President’s Budget.</td>
<td>Congressional Budget Office</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>CBO</td>
<td>Bias</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>1.73</td>
</tr>
<tr>
<td>OMB</td>
<td>Bias</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>1.47</td>
</tr>
<tr>
<td>APB</td>
<td>Bias</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>1.35</td>
</tr>
<tr>
<td>Random Walk</td>
<td>Bias</td>
<td>-2.01</td>
</tr>
<tr>
<td>Model</td>
<td>Variance</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>4.23</td>
</tr>
</tbody>
</table>

Notes:
1. Bias is calculated as the mean forecast error over the sample. A negative bias indicates under-prediction.
2. The variance is calculated as the squared standard deviation of the forecast error over the sample.
3. The RMSE is calculated by taking the square root of the sum of the variance and the squared bias.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CBO</td>
<td>Bias</td>
<td>3.64</td>
<td>4.17</td>
<td>5.03</td>
<td>6.28</td>
<td>7.56</td>
<td>8.07</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>1.92</td>
<td>1.88</td>
<td>1.94</td>
<td>2.19</td>
<td>2.47</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>14.34</td>
<td>14.33</td>
<td>14.81</td>
<td>16.09</td>
<td>17.44</td>
<td>17.54</td>
</tr>
<tr>
<td>OMB</td>
<td>Bias</td>
<td>5.10</td>
<td>5.44</td>
<td>6.17</td>
<td>7.18</td>
<td>8.18</td>
<td>7.66</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>1.60</td>
<td>1.54</td>
<td>1.57</td>
<td>1.72</td>
<td>1.88</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>13.64</td>
<td>13.54</td>
<td>13.98</td>
<td>14.96</td>
<td>15.95</td>
<td>15.64</td>
</tr>
<tr>
<td>APB</td>
<td>Bias</td>
<td>3.49</td>
<td>3.97</td>
<td>4.85</td>
<td>5.92</td>
<td>7.06</td>
<td>6.71</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>1.50</td>
<td>1.47</td>
<td>1.55</td>
<td>1.73</td>
<td>1.96</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>12.73</td>
<td>12.74</td>
<td>13.38</td>
<td>14.43</td>
<td>15.67</td>
<td>15.34</td>
</tr>
<tr>
<td>Model</td>
<td>Variance</td>
<td>1.98</td>
<td>2.09</td>
<td>2.31</td>
<td>2.53</td>
<td>2.77</td>
<td>2.83</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>21.86</td>
<td>21.34</td>
<td>20.97</td>
<td>20.68</td>
<td>20.51</td>
<td>20.16</td>
</tr>
</tbody>
</table>

Notes:
1. See the Notes for Table 5.
Table 7. One-year-ahead debt and deficit forecast-encompassing regressions

<table>
<thead>
<tr>
<th>#</th>
<th>(1984-2013)</th>
<th>Sigma</th>
<th>$b_1+b_2+b_3=1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>debt = -0.069 - 0.131cbo - 1.012omb + 2.151*apb</td>
<td>1.26%</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>(0.043) (0.208) (0.337) (0.472)</td>
<td></td>
<td>[0.281] (2.26)</td>
</tr>
<tr>
<td>2</td>
<td>(debt – apb) = - 0.0012 - 0.117*(cbo – apb) - 0.671*(omb – apb)</td>
<td>1.30%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(0.0026) (0.214) (0.265)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>deficit = 11.8 + 0.135cbo + 0.215omb + 0.499*apb</td>
<td>62.50</td>
<td>5.07*</td>
</tr>
<tr>
<td></td>
<td>(14.6) (0.164) (0.290) (0.228)</td>
<td></td>
<td>[0.014] (2.26)</td>
</tr>
<tr>
<td>4</td>
<td>(deficit – apb) = - 4.9 + 0.564*(cbo – apb) - 0.508*(omb – apb)</td>
<td>72.17</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(15.7) (0.106) (0.206)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. “cbo”, “omb”, and “apb” in rows 1 and 2 refer to those agencies’ debt forecasts, whereas they refer to those agencies’ deficit forecasts in rows 3 and 4.
2. The three entries within a given block of numbers in the last column are: the approximate F statistic for testing the null hypothesis, the tail probability associated with that value of the F statistic (in square brackets), and the degrees of freedom for the F statistic (in parentheses). Asterisks * and ** denote rejection at the 5% and 1% critical values.

Table 8. Five-year-ahead debt and deficit forecast-encompassing regressions

<table>
<thead>
<tr>
<th>#</th>
<th>(1990-2013)</th>
<th>Sigma</th>
<th>$b_1+b_2+b_3=1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>debt = 0.096 - 0.143cbo + 0.721omb + 0.419*apb</td>
<td>14.6%</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(1.450) (0.974) (1.366) (1.239)</td>
<td></td>
<td>[0.385] (2.20)</td>
</tr>
<tr>
<td>2</td>
<td>(debt – apb) = 0.072 - 0.133*(cbo – apb) + 0.701*(omb – apb)</td>
<td>14.2%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(0.051) (0.495) (1.044)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>deficit = 368.6 - 1.411cbo + 1.313omb + 0.310*apb</td>
<td>460.67</td>
<td>6.89**</td>
</tr>
<tr>
<td></td>
<td>(167.2) (0.715) (2.613) (2.106)</td>
<td></td>
<td>[0.005] (2.20)</td>
</tr>
<tr>
<td>4</td>
<td>(deficit – apb) = 332.0 - 1.201*(cbo – apb) + 2.301*(omb – apb)</td>
<td>470.36</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(180.1) (0.707) (2.164)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. See Notes for Table 7.
2. The standard errors for the five-year-ahead forecasts are calculated using the HAC variance-covariance matrix.
3. Five-year-ahead forecasts were first produced by all agencies in 1986.
Table 9. Forecast-encompassing Test Statistics for Alternative US Federal Debt Forecasts (Log levels), by Horizon and Null Hypothesis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b_1 = 1), (b_2 = 0), (b_3 = 0)</td>
<td>(b_1 = 1), (b_2 = 0), (b_3 = 0)</td>
</tr>
<tr>
<td></td>
<td>(b_2 = 0), (b_3 = 0)</td>
<td>(b_2 = 0), (b_3 = 0)</td>
</tr>
<tr>
<td></td>
<td>(b_1 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td>(b_1 \neq 1), (b_2 = 0), (b_3 = 0)</td>
</tr>
<tr>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td></td>
</tr>
<tr>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td></td>
</tr>
<tr>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Forecast</th>
<th>RMSE (%)</th>
<th>(b_1 = 1), (b_2 = 0), (b_3 = 0)</th>
<th>RMSE (%)</th>
<th>(b_1 = 1), (b_2 = 0), (b_3 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(b_2 = 0), (b_3 = 0)</td>
<td></td>
<td>(b_2 = 0), (b_3 = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b_1 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td></td>
<td>(b_1 \neq 1), (b_2 = 0), (b_3 = 0)</td>
</tr>
<tr>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td></td>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td></td>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
</tr>
<tr>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td></td>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td></td>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
</tr>
<tr>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td></td>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
<td></td>
<td>(b_1 + b_2 + b_3 \neq 1), (b_2 = 0), (b_3 = 0)</td>
</tr>
</tbody>
</table>

Notes:
1. See Notes for Table 8.
2. For each test statistic, the maintained hypothesis is the regression with all three forecasts. For the test statistics with the average forecasts, the maintained hypothesis is the regression with two agency forecasts and the average forecast.
3. \(b_i \equiv b_{i-1} - b_i \), \(b_0 = 1 \), \(b_{i-1} \equiv b_{i-2} - b_{i-1} \).
4. AVE1 is the average of the CBO and OMB forecasts. AVE2 is the average of the APB and OMB forecasts. AVE3 is the average of the CBO and APB forecasts. AVE4 is the average of the CBO, OMB, and APB forecasts.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>RMSE</td>
</tr>
<tr>
<td></td>
<td>$b_1 = 1, b_2 = 0, b_3 = 0$</td>
<td>$b_1 = 1, b_2 = 0, b_3 = 0$</td>
</tr>
<tr>
<td></td>
<td>$b_1 = 1, b_2 = 0, b_3 = 0$</td>
<td>$b_1 = 1, b_2 = 0, b_3 = 0$</td>
</tr>
<tr>
<td></td>
<td>$b_1 = 1, b_2 = 0, b_3 = 0$</td>
<td>$b_1 = 1, b_2 = 0, b_3 = 0$</td>
</tr>
<tr>
<td>CBO</td>
<td>101.3</td>
<td>591.2</td>
</tr>
<tr>
<td></td>
<td>12.54**</td>
<td>4.47**</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.010)</td>
</tr>
<tr>
<td></td>
<td>(4.26)</td>
<td>(4.20)</td>
</tr>
<tr>
<td>OMB</td>
<td>149.7</td>
<td>561.8</td>
</tr>
<tr>
<td></td>
<td>35.43**</td>
<td>3.55*</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.024)</td>
</tr>
<tr>
<td></td>
<td>(4.26)</td>
<td>(4.20)</td>
</tr>
<tr>
<td>APB</td>
<td>109.9</td>
<td>544.6</td>
</tr>
<tr>
<td></td>
<td>16.03**</td>
<td>3.46*</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.027)</td>
</tr>
<tr>
<td></td>
<td>(4.26)</td>
<td>(4.20)</td>
</tr>
<tr>
<td>AVE1</td>
<td>103.7</td>
<td>573.8</td>
</tr>
<tr>
<td></td>
<td>13.55**</td>
<td>3.81*</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.019)</td>
</tr>
<tr>
<td></td>
<td>(4.26)</td>
<td>(4.20)</td>
</tr>
<tr>
<td>AVE2</td>
<td>125.9</td>
<td>552.6</td>
</tr>
<tr>
<td></td>
<td>23.16**</td>
<td>3.46*</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.027)</td>
</tr>
<tr>
<td></td>
<td>(4.26)</td>
<td>(4.20)</td>
</tr>
<tr>
<td>AVE3</td>
<td>80.5</td>
<td>565.2</td>
</tr>
<tr>
<td></td>
<td>5.57**</td>
<td>3.66*</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.022)</td>
</tr>
<tr>
<td></td>
<td>(4.26)</td>
<td>(4.20)</td>
</tr>
<tr>
<td>AVE4</td>
<td>98.7</td>
<td>563.2</td>
</tr>
<tr>
<td></td>
<td>11.68**</td>
<td>3.58*</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.023)</td>
</tr>
<tr>
<td></td>
<td>(4.26)</td>
<td>(4.20)</td>
</tr>
</tbody>
</table>

Notes:
1. See Notes for Table 9.
Figure 2: The logs of actual debt and of the one-year-ahead and five-year-ahead CBO, OMB, and APB forecasts

Figure 3: One-year-ahead and five-year-ahead CBO, OMB, and APB debt forecast errors
Figure 4: The actual deficit and the one-year-ahead and five-year-ahead CBO, OMB, and APB forecasts of the deficit ($ billions)

Figure 5: One-year-ahead and five-year-ahead CBO, OMB, and APB deficit forecast errors ($ billions)