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Abstract

I consider a package assignment problem where multiple units of indivisible ob-

jects are allocated to individuals. The seller can specify additional costs or cost

savings on certain packages of objects: e.g., a manufacturer may incur cost savings

if they obtain a range of products or services from a single supplier. The objective

is to find a socially efficient allocation among buyers. I propose a sealed-bid auction

with a novel cost function graph to express the seller’s preferences. The graph struc-

ture facilitates the use of linear programming to find anonymous, competitive, and

package-linear prices. If agents act as price takers, these prices support a Walrasian

equilibrium, and I provide additional conditions under which an equilibrium always

exists. The auction design guarantees fairness and transparency in pricing, and it

admits preferences of the seller or auctioneer over the type and degree of concentra-

tion in the market.
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1 Introduction

In many multi-object auctions, it is standard that buyers can submit bids on packages of

objects. Submitting preferences over allocations in the market, on the other hand, is typically not

allowed, even though cost savings from specific allocations may arise naturally. In procurement

auctions, e.g., a manufacturer may want to favour package allocations: by obtaining multiple

products or services from a single supplier they can save transaction costs. In the literature on

Walrasian equilibrium to date, preferences cannot accommodate such costs either.

I consider a competitive market setting for multiple, indivisible goods, in which the seller’s

preferences may depend on the partitioning of supply among buyers. The objective is to find a

socially efficient allocation. I model the seller’s preferences over allocations as packaging costs,

where the key ingredient is a novel graph structure to express marginal cost functions. This

cost function graph allows me to obtain anonymous, competitive equilibrium prices, which are

linear in packages1 and reflect the structure of marginal costs. The anonymity, package-linearity,

and the structure itself guarantee fair and transparent pricing. The seller’s marginal costs can

reflect cost savings (or additional costs) arising from bundling certain objects together; at the

same time, there is flexibility to sell individual objects separately if demand requires it. On the

buyers’ side, I also allow for a rich set of preferences admitting complementarities as well as some

substitutabilities between objects. I characterise competitive equilibria and derive necessary and

sufficient conditions for the existence of a competitive (Walrasian) equilibrium.

In my model, a seller (“she”) supplies multiple indivisible units of multiple varieties. Several

bidders (“he”) want to buy multiple units of each variety, and each bidder has a preference over

combinations of these varieties. Similar settings, with the goal of characterising competitive

equilibria, have been studied by [5] and [6]. However, they consider an exchange economy

and a seller whose reservation utility is normalised to zero, respectively. Their model can be

straightforwardly extended to reservation values which are additive between objects, but these

do not admit preferences over the partitioning of supply among buyers. For this partitioning

problem I develop a tractable version of non-additive reservation values, allowing me to provide

insights into Walrasian equilibrium.

In the real world, non-additive reservation values or marginal costs are present whenever

the bundling of objects results in cost savings or additional expenses for the seller; I call these

packaging costs. They can take the form of transaction costs (delivery, drawing up a contract),

cost savings from realised synergies in the allocation, or even subsidies.

Many examples for realised synergies can be found in procurement. Consider a company

holding a procurement auction for two input factors, which could be two different legal services

for the same department. One legal team providing both services is likely more effective than

two different legal teams, so the company would prefer to obtain the two services from the same

law firm. At the same time, it wants to maintain flexibility to be supplied by two different firms

if this is significantly cheaper. The two products may also be machines with a servicing contract.

One supplier could provide maintenance and employee training for the machines more efficiently

1Under package-linear pricing, the same price applies to identical packages, and the price of a collection of
several packages equals the sum of prices of the packages contained in the collection. A package-linear pricing
function is non-linear in items, i.e. the price of a bundle may be different to the sum of prices of the items
contained.
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than two different suppliers. The literature in operations research has already taken an interest

in related procurement issues. E.g., [4] propose a bidding language that accommodates various

types of discounts a procurement manager may want to offer, although not in the context of

Walrasian equilibrium. Some decision support systems used in practice2 also allow for different

types of discounts and sophisticated bids ([4], [17], [16]).

Subsidies are especially relevant in auctions held by the government. Consider the allocation

of land plots for farming: a government with expert knowledge of land productivity may want

to subsidise the allocation of complementary plots in order to achieve higher land productivity.3

In auctions for biodiversity conservation contracts4 certain allocations may also be favoured

because different measures are more effective if implemented on the same piece of land. The

applications extend to transportation and telecommunication licensing, and many more.

While my main results characterise Walrasian equilibria and their existence, my work also

contributes to the literature on bidding languages, specifically the OR-of-XOR language (e.g.,

[24] and [22]).5 A version of this language was also independently developed in the Product-Mix

auction (PMA) by [19, 20, 21], which has been in use by the Bank of England following the

financial crisis in 2007 until today. In my model, each buyer has a valuation that is a relaxation

of “OR-of-XOR” valuations. Such valuations can be represented in a finite list of “XOR-bids”. I

identify conditions under which a buyer can use this representation of preferences in the auction,

under the relaxation that they may repackage their allocated collection of packages in any way

desired. The possibility of repackaging a collection of bundles of items in the most profitable

way seems natural in many settings.

Work by [2] implies that OR-of-XOR preferences without allowing repackaging satisfy the

strong substitutes (between packages) property,6,7 and it is well known that Walrasian equilib-

rium exists if all buyers have strong substitutes valuations and the supply bundle is fixed ([12],

[2]). Consequently, a package-linear pricing Walrasian equilibrium exists if all buyers have strong

substitutes valuations between packages and the supply bundle of packages is fixed. However, if

the seller partitions a given supply bundle of different objects into packages and package-linear

pricing functions are allowed, her preference cannot satisfy the “strong substitutes between

packages” property (see Appendix B). The partitioning problem is significantly more difficult

precisely because of this subtlety. Nevertheless, I derive a condition for the existence of Wal-

rasian equilibrium, using linear programming techniques in the spirit of [5]. This approach has

the additional advantage of providing a computationally tractable framework. Linear program-

ming relaxations can be solved in polynomial time, and even for associated integer programmes

duality theory provides avenues for practical computation (see, e.g., [32]).

Moreover, I establish a second result on equilibrium existence that relies only on the agents’

2[17] interviewed the companies Ariba/Procuri, CombineNet, Emptoris, and Iasta.
3Market design approaches to land allocation have been studied, e.g., in [8].
4See, e.g., the well-known BushTender auctions in Victoria (Australia) studied by [27] and others.
5XOR bids are standard in combinatorial auctions: e.g., the early package auction iBundle [25] (and many

others) uses such bids. However, allowing high-dimensional XOR bids increases the computational complexity
of the allocation problem. Using OR-of-XOR language when possible (see also Section 3.4) aims to reduce the
computational complexity.

6See e.g. [23] or [2] for a definition of strong substitutes.
7The attribute “between packages” signifies that packages, not objects, are priced individually. Thus, a buyer

may substitute one package for another.
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value and cost functions. It states that a non-linear pricing Walrasian equilibrium always exists

if buyers’ values are superadditive, the seller’s costs are subadditive and only one unit per variety

is for sale. Although this restricted environment is closely related to [29] (henceforth SY), it

is again more general in that my seller’s preferences distinguish between different partitionings

of objects among buyers. In contrast, SY’s seller has a reserve price for each bundle; once the

reserve price is met, the bundle can be sold in any partition. I show that these reserve prices can

be expressed as cost functions. Furthermore, I derive a new connection between superadditive

(subadditive) set functions and their dual set functions. This allows me to characterise properties

of those cost functions that are equivalent to superadditive (subadditive) reserve prices.

I describe the general model in Section 2, and discuss the sealed-bid auction and the main

result in Section 3. In Section 4, I present the second result on equilibrium existence and my

results on the relationship between cost functions and reserve prices. Section 5 is a conclusion.

All proofs are deferred to the appendix.

1.1 Walrasian equilibrium and packaging cost: an example

Consider a seller (e.g., the government) who has two distinct and indivisible land plots for

sale, and there are two buyers in the market, Kate and Leon. Plot A is particularly suited to

growing crop A(lfalfa), and plot B is suited to crop B(eans). Kate wants to buy either plot,

but not both, and values plot A at 40 and plot B at 50. Leon, on the other hand, wants

to buy both plots, but is not interested in a single plot. He values the combination of both

plots AB at 70. All agents have transferable utility. The seller is denoted by index 0, Kate

by K, and Leon by L. We are interested in a Walrasian equilibrium, i.e. an allocation xiS ∈
{0, 1}, i ∈ {K,L, 0}, S ∈ {∅, A,B,AB} and a pricing function p : {∅, A,B,AB} → R such that

buyers demand their allocation (obtain their preferred bundle S) and the seller maximises her

profit, at the given prices; and demand equals supply. A pricing function p satisfies by definition

p(∅) = 0 and it satisfies the standard notion of Walrasian equilibrium if competitive prices p(A),

p(B), and p(AB) are such that p(AB) := p(A) + p(B). I call this a linear pricing Walrasian

equilibrium. This paper is concerned with a more general version of Walrasian equilibrium, in

which p(AB) 6= p(A) + p(B). In the case where a single unit of each of multiple distinct objects

is sold, this is called a non-linear pricing Walrasian equilibrium. I will extend this notion to a

package-linear pricing Walrasian equilibrium in the main section.

First, assume the seller’s marginal cost is zero for the two plots. It is not hard to verify that

no linear pricing Walrasian equilibrium exists.8 Surprisingly, even the more general non-linear

pricing Walrasian equilibrium fails: there exists no solution in p(A), p(B), and p(AB).9 Now

I will modify the example. Suppose that Kate does want to buy both plots, and she values

the combination AB at 90 (and plot A at 40 and plot B at 50 as before). Suppose Leon also

wants to buy plot A alone and values it at 50 (and the bundle AB at 70 as before). The

8Suppose p(A) + p(B) ≤ 70, then Leon demands AB. However, Kate also demands either A or B, unless
p(A) + p(B) > 90, so markets cannot clear. Suppose p(A) + p(B) > 70, then Leon demands nothing. Kate
demands either plot A or plot B, but at the given prices, the seller wants to supply both.

9Because no linear pricing equilibrium exists, it must be either (i) p(A) + p(B) < p(AB) or (ii) p(A) + p(B) >
p(AB). If (i), the seller wants to sell the bundle AB. For Leon to demand AB, it must be that p(AB) ≤ 70.
For Kate to demand neither A nor B, it must be that p(A) > 40 and p(B) > 50, a contraction. If (ii), the seller
prefers to sell A and B separately, but in this case markets do not clear.
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agents’ valuations vi for this example are summarised in Table 1. [29] show that a non-linear

pricing Walrasian equilibrium always exists, with any number of distinct land plots for sale, if

all agents have superadditive values. Superadditivity of values in this example only requires

vi(AB) ≥ vi(A) + vi(B) for all i ∈ K,L, 0, which is now satisfied.10 The seller also may have

superadditive values for the bundles that she does not sell and retains for her own use instead.

For example, the seller (seller 1) may have values v0(A) = 10, v0(B) = 20, and v0(AB) = 60.

The seller’s profit is defined as the revenue she obtains from sold bundles plus the value she

derives from unsold bundles.

∅ A B AB

Kate 0 40 50 90
Leon 0 50 0 70
Seller 1 (values) 0 10 20 60
Seller 2 (marg. cost) 0 40 50 60

Table 1: Agents’ values and marginal costs over objects

However, such values cannot accommodate preferences over the partitioning among agents.

In a different model, assume the seller (seller 2) prefers the two plots to be allocated to a single

farmer, because, growing alfalfa and beans together, the enterprise may be more likely to thrive

and yield higher long-term productivity.11 The seller may not care if Kate or Leon obtains the

bundle of AB as long as one farmer obtains both plots, i.e. the seller is indifferent about the

buyer’s identity; or she may be prohibited from price discrimination by law. Suppose the seller

has a marginal cost function where c0(A) = 40, c0(B) = 50, and c0(AB) = 60. Her profits

are defined as revenue minus marginal cost of any bundle sold. Notice that this marginal cost

function is not defined arbitrarily. It is the set function dual of v0: if the value of retaining both

plots A and B is 60, and the value of retaining only B is 20, the cost of selling A is 40. I prove

that there exists a transformation between a seller with values for retained items, and a seller

who maximises revenue minus marginal cost (Proposition 4). The properties of value function

and marginal cost function also also interlinked (Lemma 5), and this linkage further illustrates

that values for retained items can never accommodate preferences over the partitioning of supply.

The

In a non-linear pricing Walrasian equilibrium, and a seller with the value function v0 for

retained land plots, plot A is sold to Leon and plot B to Kate. On the contrary, equipping

the seller with the marginal cost function c, the plot AB is allocated to Kate. This is precisely

because in the presence of a seller with marginal cost function c, cost savings of 30 (40 + 50

- 60) are realised when allocating the bundle to a single buyer instead of allocating plot A

and B separately. As is standard, a non-linear pricing Walrasian equilibrium implements an

efficient allocation, and I prove this extends to the notion of package-linear pricing Walrasian

equilibrium (Lemma 1). My Theorem 2 and Corollary 4 guarantee that a non-linear pricing

Walrasian equilibrium always exists, with any number of distinct land plots for sale, if all buyers

10Note that a linear pricing Walrasian equilibrium also exists in this example, supported by p(A) = p(B) = 50.
In general, this is not the case as shown in Example 1 in [29].

11A farm growing different crops may be less susceptible to weather extremes or demand fluctuations, and
many other synergies may arise.
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have superadditive values and the seller has subadditive marginal costs over the partitioning of

supply,12 and it can be determined through an ascending auction. Note also that the seller’s

preference with values for retained items is similar to buyers’ preferences. Indeed, I describe how

this type of seller may disguise as a buyer in the market, and interact with another seller whose

preferences are given by marginal cost functions over the partitioning of supply (Proposition 5).

The results illustrated so far provide a baseline for Walrasian equilibrium with packaging

costs and connect it to the previous literature in which reserve prices were merely additive. In

reality, however, a model of pure complements may still be unsatisfactory. Indeed, most of the

time multiple units of distinct varieties need to be allocated, e.g. two land plots of type A,

two land plots of type B, and three land plots of type C. Distinct or identical land plots may

be complements for some buyers but substitutes for others. The seller may also have richer

preferences over the partitioning, e.g., she may prefer allocations in which plots of type A and B

are allocated to a single buyer, but plots of type B and C are each allocated to different buyers.

She may prefer a more equal distributions of land among buyers, or she may prefer allocations

where plots of the same type are allocated to a single buyer. Even more, she may not only favour

a specific type of concentration (or equal distribution), she may also favour a certain degree of

concentration; the marginal cost of allocating a plot of a given type may be also be increasing.

All these preferences, and many more dependencies between marginal costs of any bundles

of land plots, are allowed in my general model; importantly, the preferences are independent

of any buyer’s identity. Precisely this requirement allows me to characterise a package-linear

pricing Walrasian equilibrium with anonymous prices (Proposition 3 and Corollary 1), and I

provide a condition for the existence of such equilibrium (Theorem 1).

2 A model of a competitive market with packaging costs

2.1 Preliminaries

I use basic multiset theory in my model and formally define multisets, feasible multisets, and

basic operations on multisets.13

Definition 1 (Multiset). Given an underlying finite set A = {a1, . . . , an}, a multiset is defined

as a mapping m : A→ N0, and written as m := (m(a1), . . . ,m(an)).

Each element a ∈ A is distinguishable, but occurrences of the same element are indistinguish-

able. m(a) denotes the multiplicity of a, i.e. there are m(a) occurrences of a in the multiset

m. For ease of notation, I denote m(a) as ma. There are n indivisible, distinguishable varieties

in the economy, denoted j ∈ N := {1, . . . , n}, with a maximum supply of Ωj units per variety.

I formulate my model such that packages of complementary objects (on the buyers’ side) and

packages associated with the seller’s packaging costs only consist of distinct objects. Packages of

identical objects will be treated as multisets of packages, or “collections of packages”. Making

this assumption simplifies the exposition of my multi-unit environment, and it is without loss

12Note that introducing the seller’s cost function to the example, a linear pricing Walrasian equilibrium does
not exist: to implement the efficient allocation xKateAB = 1 we must have p(A) > 50 so that Leon demands nothing,
but Kate demands AB over B only if 90− p(A) ≥ 50, a contradiction.

13See for example [7] for an extensive treatment of multisets.
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of generality: relabelling appropriately I can translate any setting with complementarities or

packaging costs between identical objects into mine, and I demonstrate this in Section 3.4.

Definition 2 (Package). A package is defined as a set S ⊆ N .

A package contains at most one unit of each different variety, and there exist 2n− 1 distinct

packages in the economy, not including the empty package. The powerset of N is denoted 2N . If

|S| = 1, the package may also be denoted by j, where j is the only variety contained in S. I write

a multiset of varieties (with underlying set N) as m ∈ Zn+, a vector (m1,m2, . . . ,mn), where

each mj denotes the multiplicity of variety j. I write a multiset of packages (with underlying set

2N ) as k ∈ Z|2
N |−1

+ , a vector (kS1 , kS2 , . . . , kS2n−1
), where each kSx denotes the multiplicity of

package Sx. Given a set A ⊆ 2N , k−A denotes the vector (kS1 , kS2 , . . . , kS2n−1
), where kSx = 0

for all Sx ∈ A. The feasibility of multisets in the economy is restricted by the maximum supply

per variety. I denote the universe of all feasible multisets by K. Formally,

K :=

k ∈ Z|2
N |−1

+ :
∑

S∈2N ,S3j

kS ≤ Ωj ∀j ∈ N


If a multiset k contains only a single set S, i.e. kS = 1, kS′ ,= 0 for all S′ 6= S, I denote k simply

by S. For a function f : Z|2
N |−1

+ → R, f(S) is short for f(k with kS = 1, k′S = 0 ∀S′ 6= S). The

maximum supply of all units is given by the multiset of varieties N := (Ω1, ...,Ωn). I define the

following basic operations for multisets:

Definition 3. Let k = (kS)S∈2N ,k
′ = (k′S)S∈2N ∈ Z|2

N |−1
+ .

(i) Sum. k + k′ = (kS + k′S)S∈2N . The sum operator for multisets is denoted +.

(ii) Multiplication with a scalar. αk = (αkS)S∈2N

(iii) Unpacking. k∗ = (mj)j∈N with mj =
∑

S∈2N ,S3j kS ∀j ∈ N

(iv) Cardinality. |k|=
∑

S∈2N kS

The unpacking-operator ∗ breaks a multiset of packages k down into a multiset of the indi-

vidual varieties contained in k.

2.2 Agents and preferences

There is one seller (“she”) in the economy, denoted by 0, and a set of L buyers (bidders)

denoted by l ∈ L := {1, . . . , L}. The set of all agents is denoted by L0 := L ∪ {0}.

2.2.1 Buyers

Each buyer (“he”) has a preference over packages of goods, which can be summarised by a

value function V l : Z|2
N |−1

+ → Z+ with V l(∅) = 0. I add some structure on this value function

such that preferences bear the characteristic of superadditivity between complementary objects,

and, at the same time, the substitute characteristic of weakly decreasing marginal values between
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identical varieties and packages. In the literature, superadditivity is the most general concept

of complementarity comprising supermodularity and gross complements ([26],[29]).

The preference structure is “OR-of-XOR” (see, e.g., [24] or [22]) with some additional re-

quirements. Hence, each bidder’s valuation can be mapped into a finite list of XOR-bids (and

this will be shown formally later). However, I also introduce a new and natural feature into this

preference: buyers may repackage an allocated collection of packages in any way they desire.

Therefore, and to simplify the exposition of my results, we use a different definition of buyers’

values.14 Given a multiset of packages k, a buyer’s aggregate value of k is derived from an

assignment of packages in the multiset to positions {1, . . . , |k|} (where not all positions have to

be filled), treating each copy as a separate package. The aggregate value of k will be defined by

the value-maximal assignment of the copies of packages contained in k.

Definition 4 (Marginal values). A marginal value function is defined as vl : Z+ × 2N → Z+.

vl(q, S) describes the marginal value bidder l derives from package S ∈ 2N if he assigns it the

qth position in {1, . . . , |k|}. Interdependencies between valuations of different bidders are not

allowed.

Definition 5 (Marginal value aggregation). For any multiset k, a bidder’s overall value is

defined as

V l(k) = max
{xq,S}

∑
S∈2N

M∑
q=1

vl(q, S)xq,S s.t.

M∑
q=1

xq,S ≤ kS ∀S,
∑
S∈2N

xq,S ≤ 1 ∀q, xq,S ∈ {0, 1} ∀S, q

where M := maxq,S{q : vl(q, S) > 0}. xq,S is one if package S is assigned to the qth position in

{1, . . . , |k|}, and zero otherwise.

If a bidder is given a multiset of packages, the bidder may not be able to repackage the

varieties contained in the multiset of packages, as in Definition 5, due to physical or contractual

constraints. I also consider bidders who can repackage the assigned varieties into those packages

that are most valuable to them.

Definition 6 (Marginal value aggregation with repackaging). For any multiset k, a bidder’s

overall value is defined as

Ṽ l(k) = max
{xq,S}

∑
S∈2N

M∑
q=1

vl(q, S)xq,S s.t.
∑
S3j

M∑
q=1

xq,S ≤ k∗j ∀j,
∑
S∈2N

xq,S ≤ 1 ∀q, xq,S ∈ {0, 1} ∀S, q

where M := maxq,S{q : vl(q, S) > 0}. Again, xq,S is one if package S is assigned to the qth

position in {1, . . . , |k|}, and zero otherwise.

Example 2 in the appendix illustrates that the marginal value aggregation is useful and

parsimonious when dealing with valuation for packages. It also illustrates the difference between

the aggregating marginal values with and without repackaging. With this structure, it is now

straightforward to define the properties of superadditivity between different varieties, and weakly

decreasing marginal values between identical packages and varieties.

14If repackaging is not allowed, my definition is equivalent to OR-of-XOR preferences.
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Definition 7 (Superadditivity). A marginal value function vl : Z+× 2N → Z+ is superadditive

if for any disjoint sets S1, S2 ∈ 2N and for all q ≥ 1 it holds that

vl(q, S1 ∪ S2) ≥ vl(q, S1) + vl(q, S2).

Definition 8 (Decreasing marginal values). A marginal value function vl : Z+ × 2N → Z+ is

decreasing if for any package S ∈ 2N , for all q ≥ 1, it holds that

vl(q, S) ≥ vl(q + 1, S).

If a marginal value function vl : Z+×2N → Z+ satisfies Definitions 7 and 8, I call it multi-unit-

decreasing superadditive (short MU-decreasing superadditive). I call the aggregate value function

constructed from vl(q, S) according to Definition 5 or 6 multi-unit concave superadditive (short

MU-concave superadditive) if vl(q, S) is MU-decreasing superadditive. I make the following

assumptions on the bidders’ values and utility:

Assumption 1 (Multi-unit-concave superadditivity). Every bidders’ value function V l is MU-

concave superadditive.

Assumption 2 (Quasi-linear utility). Every bidder’s utility is given by ul(k, p) = V l(k)− p(k)

when he receives a multiset of packages k.

2.2.2 Seller

The seller’s (“she”) preferences are given by (i) an (incremental) marginal cost function for

each individual variety sold, (ii) incremental marginal cost functions which may take effect when

varieties are sold as a package, and (iii) a graph characterising cost relations, i.e. which incre-

mental marginal cost functions take effect when a given package is sold. These three elements

define the seller’s cost functions I allow in my model. First, I define the graph characterising

cost relations. This graph is called a cost function graph (CFG).

Definition 9 (Cost function graph). A CFG is defined as a directed graph G := (V,E), where

the set of vertices is given by V = 2N . The set of edges E defines cost relations subject to the

conditions below.

Definition 10 (Path existence and length).

(i) Whenever there exists a sequence of vertices (S1, S2, ..., St) such that (S1, S2), ..., (St−1, St) ∈
E, I say there exists a path from S1 to St and write ∃(S1...St). There always exists a path

(S, ..., S), i.e. from any package S to itself.

(ii) Given a path H := (S1, S2, ..., St), |H|:= t− 1, i.e. |H| denotes the length of path H.

(S1, ..., St) may not be uniquely defined; but this is not important for my purpose. The CFG

serves two purposes: First, it describes the cost relations between packages. Whenever ∃(T...S),

i.e. there exists a path from T to S, I say that “package T has a cost relation to package S”.

This means that a cost increment corresponding to S also contributes to the marginal cost of

T . Second, the CFG facilitates the counting of varieties contained in packages, so that overall
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supply is never violated. Each node in the CFG also corresponds to an incremental marginal cost

function. The incremental marginal cost function corresponding to a single variety j contributes

to the overall cost of a multiset, whenever a copy of j is sold, if separately or as part of a package;

hence, counting these contributions allows me to keep track of overall supply. To fulfil the two

described purposes, the graph is required to have the following properties.

Assumption 3 (Permissible cost relations).

(i) If (T, S) ∈ E, then S ⊂ T .

(ii) There exists a directed path from every package S to every single variety j that is contained

in S, i.e. ∀S, ∀j ∈ S, ∃(S...j).

Assumption 3(i) is intuitive in an economic sense: if a bundle has no “physical” relation

to another package (in terms of being a superset of it), it also cannot have a cost relation to

it. From Assumption 3(i) it follows that node N is always a source; but G may contain other

sources as well. It also follows that G contains no cycles. From Assumption 3(i) and 3(ii) it

follows that S is a sink if and only if S is a single variety. This is required because the seller’s

“physical” supply is given by the number of units available of each individual variety Ωj . A

marginal cost function corresponding to a sink will count the number of units of each single

variety allocated.15 Assumption 3(ii) ensures that whenever a unit of a given package S is

allocated, the single varieties contained in that package are counted correctly. It also follows

that G is weakly connected. If ∃(T...S), I say that “package T has a cost relation to package

S”.

Each node of the CFG also corresponds to an incremental marginal cost function ∆c(·, S), S ∈
2N . Suppose one copy of package T is sold and nothing else. Then the marginal cost of T is

obtained by adding all incremental marginal costs ∆c(·, S) to which T has a cost relation, i.e. the

marginal cost of T is
∑

S∈2N :∃(T...S) ∆c(·, S). Whenever a package with cost relation to S is sold,

the incremental marginal cost ∆c(·, S) is added to the overall cost of the supplied multiset. I

allow the incremental cost to depend on q, the number of packages with cost relation to S sold.

Definition 11 (Incremental marginal cost). Incremental marginal cost functions are defined as

∆c : Z+×2N → Z, where ∆c(q, S) is the incremental marginal cost the seller incurs from selling

a given copy of a package T due to its cost relation to package S, when she sells q − 1 copies of

other packages with cost relation to S, not including the original copy of T . For q = 0 and for

all S, I define ∆c(0, S) := 0. For all j ∈ N , and for all q > Ωj , I define ∆c(q, j) :=∞.

Note that I permit negative incremental marginal costs.

Definition 12 (Marginal cost). Given a CFG, and an incremental marginal cost function ∆c,

the marginal cost of a bundle S ∈ 2N is defined as a function c0 : Z+×2N ×Z2n−1
+ → Z+. Given

B ⊆ 2N , c0(k, S,k−B) denotes the seller’s marginal cost from selling the kth “unit” of package

15Should the graph be such that S with |S| > 1 is a sink, S would have to be defined as a “new” single variety,
available in quantity ΩS .
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S, when she also sells the packages k−B. Let S ∈ B. Then

c0(k, S,k−B) =
∑
γ∈2N :
∃(S...γ)

∆c(qγ , γ), where qγ :=
∑

A∈2N\B:
∃(A...γ)

kA + k

Note that kA counts the number of packages of type A supplied, whereas qγ counts the

number of packages of any type A : ∃(A...γ) supplied, excluding the packages in B. For single

varieties j ∈ N we have c0(k, j,k−j) = ∆c(k, j), so the marginal cost equals the incremental

marginal cost of the kth unit of package j.

Definition 13 (Cost). Given a CFG, and an incremental marginal cost function ∆c, the cost

of selling a number of packages given by k ∈ K is defined as a function C0 : K→ Z+, and given

by

C0(k) =
∑
S∈2N

qS∑
y=1

∆c(y, S), where qS :=
∑
γ∈2N :
∃(γ...S)

kγ

The seller’s overall cost of selling a multiset of packages is given by adding all incremental

marginal costs that occur due to cost relations of the packages she supplies. This also takes

the interaction of packages with overlapping subsets of single varieties into account; the cost of

each additionally supplied package may differ from the cost of a previously supplied, identical

package. From Definition 11, it follows immediately that for any k = (kS)S∈2N for which

∃ j ∈ A ⊆ N :
∑

S∈2N ,S3j kS > Ωj , we have C0(k,A,k−A) := ∞, i.e. package A (and by

extension the multiset k) cannot be sold because the seller is constrained in the supply of at

least one variety in A. Note that the seller cannot procure a bundle at the cost of the bundle

and then split it up into subsets to be sold individually, or vice versa. I also make the following

assumptions on the seller’s preferences.

Assumption 4 (Increasing incremental marginal cost). The seller’s incremental marginal cost

functions ∆c are increasing, i.e., for any package S ∈ 2N and for all q ≥ 1, it holds that

∆c(q, S) ≤ ∆c(q + 1, S).

The seller incurs at least the cost of each individual package sold; if she sells two packages,

the cost of selling both is weakly greater than the sum of the cost of each individual package,

due to Assumption 4 and Definition 13.

Assumption 5 (Seller’s quasi-linear profit). The seller’s profit is given by u0(k, p) = p(k) −
C0(k) when she sells the multiset of packages k.

Definition 14 (Subadditive marginal cost). Let S1, S2 ∈ 2N be two disjoint packages, and let

B := {S1∪S2, S1, S2}. The seller’s marginal cost is subadditive if it holds that, for all k−B ∈ K,

and for all k ≥ 1,

c0(k, S1 ∪ S2,k−B) ≤ c0(k, S1,k−B) + c0(k, S2,k−B).
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For general cost function graphs, subadditivity of marginal cost is not obvious; one would

have to compute the marginal cost for each possible multiset that could be supplied. For a

special class of CFG, however, there is a straightforward criterion, which I describe in section

3.3.1.

2.3 Demand, supply, and equilibrium

The aim is to develop a framework in which equilibrium prices are package-linear.16 Given

the objects available for sale, the seller chooses a multiset k of packages to supply. k must

be feasible, i.e. k ∈ K, or +S∈2N kSS
∗ ⊆ N . An allocation of objects in N is defined as an

assignment π = (π(l), l ∈ L0) of these objects among the bidders and the seller, such that

+l∈L π(l) = k and π(0) = N − k∗. π(l) is the multiset of packages assigned to agent l under

the allocation π, where π(l) may be the empty set, and π(0) 6= ∅ means that the objects in π(0)

are not sold. Bidder l’s demand correspondence and indirect utility are defined as

Dl(p) := arg max
k∈K

ul(k, p) and V l(p) := max
k∈K

ul(k, p).

I define the seller’s supply correspondence S(p) and profit functions as

S(p) := arg max
k∈K

p(k)− C0(k) and Π(p) := max
k∈K

p(k)− C0(k).

Definition 15. An allocation π is efficient if it holds for every allocation π′ that∑
l∈L

V l(π(l))− C0(k) ≥
∑
l∈L

V l(π′(l))− C0(k′)

where k = +l∈L π(l) and k′ = +l∈L π
′(l).

Given an efficient allocation π, the market value is defined as V (N ) :=
∑

l∈L V
l(π(l))−C0(k).

Formally, a pricing function is a function p : Z|2
N |−1

+ → R with p(∅) = 0. This function is

nonlinear in varieties j ∈ N , i.e. for any package S ∈ 2N we may have p(S) 6=
∑

j∈S p({j}).

Definition 16. A pricing function p : Z|2
N |−1

+ → R with p(∅) = 0 is package-linear if and only

if, for all k ∈ Z|2
N |−1

+ , p(k) =
∑

S∈2N kSp(S).

Thus, a package-linear pricing function can be represented as a mapping p : 2N → R.

Definition 17. A package-linear pricing Walrasian equilibrium is given by a package-linear

pricing function p∗ : 2N → R and an allocation π∗ such that +l∈L π(l) ∈ S(p∗) and π∗(l) ∈
Dl(p∗) for every bidder l ∈ L.

If the pricing function is linear in varieties, the package-linear Walrasian equilibrium is

simply the standard Walrasian equilibrium. Walrasian equilibrium and and efficient allocations

are connected in the standard way.

16SY call a pricing function p : 2N → R non-linear, and the equilibrium concept Non-linear pricing Walrasian
equilibrium (NPW). With only one unit per variety for sale, the non-linear equilibrium and the package-linear
equilibrium are the same concept.
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Lemma 1. If (p∗, π∗) is a package-linear Walrasian equilibrium, π∗ is an efficient allocation.

Furthermore, if π′ is another efficient allocation, (p∗, π′) is a package-linear Walrasian equilib-

rium as well.

Note that I defined efficiency and Walrasian equilibrium assuming bidders have aggregate

marginal values without repackaging. If bidders have the technology to repackage bundles they

have been allocated in the auction, V l needs to be substituted by Ṽ l (in the definition of ul).

3 The sealed-bid package auction and Walrasian equilibrium

In this section I describe how the agents can submit their preferences in the auction. The

auction design is based on the assumption of agents submitting (approximately) truthful pref-

erences. It will be shown later that this results in a Walrasian equilibrium allocation supported

by competitive prices; but it is helpful to keep the assumption of truthful behaviour in mind in

this section.

3.1 Buyers’ bidding language

Each bidder l submits a list of bids to the auctioneer in a sealed envelope. The auctioneer

treats each bid as independent from other bids, including the ones made by the same bidder,

i.e. the auctioneer only cares about the aggregate list of bids. It is therefore convenient to simply

enumerate the bids by i ∈ I := {1, . . . ,m}. I also denote the list of bids submitted from bidder

l by I l, i.e. +l∈L I l = I.

Each bid submitted in the auction is a package XOR-bid and each bidder can submit any

finite number of package XOR-bid.

Definition 18 (Package XOR-bid). A package XOR-bid is a vector of length 2n. It specifies a

maximum price viS for each available package in the auction (except the empty package) which

the bidder is willing to pay, and an overall maximum quantity κi.

I denote by xiS the allocation of bundle S to bid i. I will show that each package XOR-bid

is guaranteed to obtain only packages that maximise its surplus.

Package XOR-bids are the straightforward extension of so called “paired bids” used in the

Product-Mix auction by [20] to an environment where packages are sold in addition to single

varieties. An allocation xiS , S ∈ 2N , i ∈ I l maps into a multiset π(l) = kl, where klS =
∑

i∈Il x
i
S .

Naturally, the reverse mapping is not possible. I say that a value function V l can be represented

by a list of bids, if (i) there exists a mapping from V l to the list of bids, and (ii) given an

allocation to bidder l, the bidder’s value V l from this allocation is identical to the value entering

the auctioneer’s objective. Package XOR-bids allow each bidder to represent their preferences:

Proposition 1. If the auctioneer maximises social welfare, every bidder’s value function V l

satisfying Definitions 4 and 5 and Assumption 2 can be represented by a finite list of XOR-bids.

The proposition above tells us that when bidders cannot repackage their received objects,

preferences can be easily translated into the XOR-bid language. However, once bidders are

allowed to repackage, the bidding language loses some of its power. Consider the example below.
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If bidder 1 gets assigned A and B as separate bundles and she can repackage, her value of this

assignment is v1(1, AB) = 9, not v1(1, B) + v1(2, A) = 5 + 1. Thus, the interpretation of the

bids is ambiguous to the seller: because she cannot distinguish which bids were made by which

bidder, she may assume that A and B are used as separate bundles, when in fact the bidder

uses them as a package, and hence should also pay the package price pAB, instead of pA + pB. If

repackaging is possible, in general, an accurate representation of the seller’s preferences is not

possible. Given an allocation, the bidder is always weakly better off compared to the value the

auctioneer assigns to his contribution to welfare. However, when the preferences of the seller

and bidders align such that all varieties are complementary to one another, repackaging can be

allowed.

Proposition 2. Assume the auctioneer maximises social welfare, and let bidder l’s preference

satisfy Assumption 1 (MU-concave-superadditivity) and let the seller’s preference satisfy subad-

ditivity of marginal costs according to Definition 14. (Assume also that the standard Definitions

4, 5, 9, 11, 12, 13 hold and standard Assumptions 2, 3, 4 of my model are satisfied.) Then

the bidder never has to repackage bundles to achieve the highest aggregate of marginal values,

i.e. V l = Ṽ l.

Given the XOR-bid structure and Proposition 1, bidder l’s indirect utility is

V l(p) := max
xiS ,i∈Il

∑
S,i∈Il

(viS − pS)xiS s.t.
∑
S

xiS ≤ κi ∀i ∈ I l (1)

For three packages {A}, {B}, {AB}, a bid (vA, vB, vAB, 1) can be illustrated in price space pA×
pB × pAB as shown in Figure 6 in the appendix.

Note that, allowing repackaging of collections of bids, MU-concave superadditivity of bidders’

values and subadditivity of the seller’s marginal costs is required such that bidders can represent

their preferences accurately in the mechanism. Generally, not allowing repackaging, any buyers’

preference that can be represented as a list of XOR-bids is admissible in the auction. If a

bidder were interested in at most one unit of each variety, a package XOR-bid would be fully

expressive, i.e. allow the representation of any preference. Although somewhat more restrictive

with multiple units per variety, bidders can express a rich set of preferences in this language.

Note also that in the most general environment my mechanism may not always produce an

indivisible allocation. Instead, some packages may have to be rationed, e.g., a bid may receive

only “half” of a package AB.17

3.2 Seller’s bidding language

The seller can also perfectly represent her preferences in the auction. She submits her pref-

erences through two components: (i) supply functions, and (ii) a graph describing the relations

between supply functions. If she reports her preferences truthfully, the supply functions will

correspond precisely to the incremental marginal cost functions, and the graph describing rela-

17Formally, one would extend the XOR-bid so that it can also be satisfied with a combination of packages in
the convex hull of the given bid, i.e. the bid can be satisfied with any combination of fractions of packages, the
sum of which adds up to not more than the maximum quantity specified.
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tions between supply functions will correspond to her cost function graph (CFG). The submitted

CFG is called a supply function graph (SFG).

The seller submits 2n − 1 supply functions. Each is required to be a weakly increasing

step function. Analogously to incremental marginal cost functions, a supply function fj for

an individual variety j describes the marginal cost of each unit supplied of variety j. A supply

function fS for package S with |S| > 1 describes the incremental marginal cost for every package

S′ : ∃(S′...S), i.e. the additional cost, or the cost savings, inherited by S′, which also contains

the objects bundled together in S.

fS is a step function, where the qth step has length lqS and height µqS . Without loss of

generality the length of each step can be normalised to one. I denote by yqS the amount allocated

on step q of fS . Each supply function consists of an infinite number of steps, and there exists

a finite qS such that µqS = ∞ for all q > qS . Thus, any step q > qS will never be allocated. I

define q := max{qS |S ∈ 2N}.
I make the following two requirements on supply function graphs to ensure non-negative

costs and weakly increasing incremental marginal costs.

Requirement 1 (Non-negative costs). ∀ k ∈ K :
∑

S∈2N
∑qS

y=1 µ
y
S , where qS :=

∑
γ∈2N :
∃(γ...S)

kγ

Requirement 2 (Weakly increasing marginal costs). ∀ S, q : µqS ≤ µ
q+1
S

Because supply function fS describes the incremental marginal cost that is inherited by all

packages S′ with a cost relation to S, i.e. ∃(S′...S), I define the allocation on supply function as

follows.

Definition 19 (Supply step allocation). Whenever a step on supply function fS is allocated, a

step on every supply function fS′ is allocated, for all S′ : ∃(S...S′).

The allocation on supply curve fS is limited by the minimum number of steps with finite

height among all supply curves fγ : ∃(S...γ). Note that this reflects precisely my definition of

marginal costs: for k = (kS)S∈2N for which ∃ j ∈ A ⊆ N :
∑

S∈2N ,S3j kS > Ωj , I defined

C0(k,A,k−A) :=∞. An important property of this supply function graph is that an allocation

(yqS)S∈2N ,q≤q uniquely identifies a multiset of packages:

Lemma 2. Given a supply function graph G = (V,E) satisfying Assumption 3, there exists a

linear one-to-one mapping between a supply function allocation (yqS)S∈2N ,q≤q and a corresponding

multiset of packages k.

Now I can rewrite the seller’s problem as follows.

max
k∈K

{
p(k)− C0(k)

}
⇔ max

kS

∑
S∈2N

kSp(S)−
∑
S∈2N

qS∑
y=1

∆c(y, S)

 where qS :=
∑
γ∈2N :
∃(γ...S)

kγ

⇔ max
kS ,y

q
S

∑
S∈2N

kSp(S)−
∑
S∈2N

qS∑
q=0

µqSy
q
S

 s.t. yqS ≤ l
q
S ∀S, q
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Subtracting the seller’s cost simply amounts to subtracting the amounts allocated on each step

multiplied with the height of the corresponding step; Lemma 2 allowed me to substitute some

kγ with the yqγ , which are now additional choice variables.

3.3 Solving the auction

The auction input is a list of bids {(viS)S∈2N , κ
i}i∈I , a list (µqS , l

q
S)S∈2N ,q≤q, and a supply

function graph given by a graph GSFG. xiS denotes the allocation of bundle S to bid i, yqS denotes

the allocation on step q of the supply function fS , and YS denotes the total amount of bundle S

allocated. The auctioneer’s objective is to find the efficiency maximising partitioning of supply.

That is, the objective is to find an allocation {xiS , y
q
S , YS}S∈2N ,i∈I,q≤q that maximises the sum

of the buyers’ surplus and of the seller’s profit. The SFG determines the relations between the

supply functions (fS)S∈2N . Lemma 2 tells us that given a SFG with the necessary properties,

there exists a linear one-to-one mapping between {yqS}S∈2N ,q≤q and YS , for all S ∈ 2N . I denote

this mapping by φ : Z2n×q
+ → Z2n , where φS({yqS}) = YS . The auctioneer’s problem can be

written as an integer programme, called “IP” and is

IP

max
{xiS ,y

q
S ,YS}

∑
i,S

viSx
i
S −

∑
S,q

µqSy
q
S

 s.t.



∑
S x

i
S ≤ κi ∀i bid size constraint

yqS ≤ lqS ∀q,∀S step size constraint∑
i x

i
S ≤ YS ∀S supply constraint

YS = φS({yqS}) ∀S SFG relations

xiS , y
q
S , YS ∈ Z+ ∀S,∀i,∀q

The supply constraint must be binding at the optimum, so prices cancel from the buyers’ and

seller’s objective. As a next step, I substitute for YS , and relax the integer programme to a

linear programme, called “LP”. The corresponding dual variables are listed to the right of the

constraints.

LP

max
{xiS ,y

q
S}

∑
i,S

viSx
i
S −

∑
S,q

µqSy
q
S



s.t.



∑
S x

i
S ≤ κi ∀i bi bid size constraint

yqS ≤ lqS ∀q,∀S uqS step size constraint∑
i x

i
S − φS({yqS}) ≤ 0 ∀S zS supply constraint

xiS , y
q
S ≥ 0 ∀S, ∀i,∀q

Linear programming techniques allow me to write the corresponding dual problem, called

“DLP”. I denote by ψ({zS}) the “dual function” of φ({yqS}). Formally, let φ({yqS}) = Φyᵀ,

where Φ is a |S|×|S|-matrix, which can be determined by Algorithm 1, and y =
(∑

q y
q
S

)
S∈2N

,

i.e. a row vector each entry of which contains the total amount allocated on supply curve

fS . φS({yqS}) = ΦSyᵀ, i.e. the row corresponding to package S of Φ multiplied by yᵀ. Then

ψ({zS}) = Φᵀzᵀ, where z = (zS)S∈2N .
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DLP

min
{bi,zS ,uqS}

∑
i

κibi +
∑
q,S

lqSu
q
S



s.t.


bi + zS ≥ viS ∀i, S xiS surplus constraint

uqS − ψS({zS}) ≥ −µqS ∀q,∀S yqS marginal cost constraint

bi, uqS , zS ≥ 0 ∀S,∀i,∀q

In the following, I define the final auction prices as part of the solution of DLP. I characterise

the price structure and discuss some additional properties of the auction prices. Finally, I state

my main theorem of this section.

The auction price of bundle S is given by the dual variable of the supply constraint on bundle

S, zS . In the interpretation of zS as a shadow price, it is the value of the last unit the seller

supplies on a given bundle. The auction prices zS are uniform, anonymous, package-linear prices,

i.e. a generalisation of the uniform pricing rule to package-goods. bi is the surplus generated on

bid i. The feasible set of LP is a non-empty, convex polytope and therefore an optimal solution

always exists; by strong duality, an optimal solution to DLP exists also.

Proposition 3 reveals an important property of the auction prices. The auction price is

determined, not only for each package S of which a positive amount is allocated in the auction,

but also for each package to which S has a cost relation.

Proposition 3. For all S ⊆ N ,

(i) it holds that, for all q ≤ q,

zS ≤
∑

γ:∃(S...γ)

(
uqγ + µqγ

)

(ii) and if y
q̃γ
γ 6= 0 ∀γ : ∃(S...γ), it holds that, for all qγ ≤ q̃γ,

zS =
∑

γ:∃(S...γ)

(
u
qγ
γ + µ

qγ
γ

)
For single varieties, we have zj = uqj + µqj if yqj 6= 0. That is, the auction prices are given

by marginal costs to the extent that they do not have to be adjusted to set non-allocated

bids at least indifferent (the uqj provide the necessary flexibility); for packages, the zS equal

the sum of incremental marginal costs of each variety or package that package S has a cost

relation to (plus adjustments through the uqj). There may exist a set of equilibrium prices. The

complementary slackness conditions corresponding to primal and dual constraints generate a

system of equations which the auction prices have to satisfy. This solution is not necessarily

unique; and in addition, the uqS may leave some ambiguity. This creates more flexibility for the

auctioneer because he can choose from a set of equilibrium prices, and she can specify additional

rules to do so.18 For example, she can define a rule to always choose the lowest equilibrium

prices on certain packages,19 or the highest, or a compromise between prices favouring bidders

18Modern LP-solvers can return the set of all integer solutions.
19A set of lowest equilibrium prices may not always exists (see example 2 in the appendix).
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and prices favouring the seller. The following corollary provides an additional characterisation

of the auction prices.

Corollary 1. Let q be the last step of supply function fS that is allocated, i.e. yqS 6= 0 and

yq+1
S = 0. Let also y

q̃γ
γ 6= 0 ∀γ : ∃(S...γ). Then, for all qγ ≤ q̃γ ,

(i) uqS + µqS ≤ µ
q+1
S

(ii) ψS({zS}) = zS −
∑

γ:∃(S...γ),γ 6=S

(
u
qγ
γ + µ

qγ
γ

)
The term ψS({zS}) describes the price gain from selling all objects in S together in package

S, in addition to the price satisfying all other cost relations. If this price gain was strictly less

than µqS , the seller would prefer not to sell the package, and if this price gain was strictly greater

than µq+1
S , the seller would prefer to sell an additional package S. Finally, the auction prices I

characterised support indeed an equilibrium. Moreover, this equilibrium exists if and only if it

can be characterised by an optimal solution of LP.

Theorem 1. A package-linear pricing Walrasian equilibrium exists if and only if any optimal

solution to IP is also an optimal solution to LP, i.e. the optimum values of IP and LP coincide.

my theorem generalises the results by [5] and [6] in that my seller’s preferences are non-

additive in varieties. Note that my auction is a uniform price auction for multiple differentiated

packages. Because the allocation rule is such that not only units of the same variety, but also

packages composed of different varieties compete against one another for an efficient allocation,

my auction can be seen as set of simultaneous uniform-price auctions for packages, with addi-

tional competition between packages. Thus, the results from [30] on asymptotic efficiency apply

to my setting. Under asymptotic environmental similarity20 and other standard assumptions,

they show that any equilibrium must be asymptotically ex-ante efficient. If a large number of

bidders for each package participates in my auction, with the assumptions of [30] being satis-

fied for each package separately, it appears my auction is also asymptotically ex-ante efficient.

Related results have been shown by [11] and [13].

The assumptions imposed on the agents’ preferences are only to comply with the bidding

language of my mechanism. While it is suited for complementary varieties, under a different

bidding language, the sealed-bid auction will still yield a Walrasian equilibrium, if it exists, if

some varieties are substitutes. In this case one needs to exercise caution for specific configurations

of reserve prices, for instance, if some varieties are substitutes for the auctioneer (superadditive

reserve prices), but complements for some bidders. If bidders know that reserve prices are

superadditive, and are allowed multiple bids, they have an incentive to bid on individual varieties

instead of a package.

3.3.1 Complete supply function graphs

When cost savings from packaging two varieties together are independent of other varieties

present, a special class of cost functions graphs can be formulated. This class of CFGs may be

20Asymptotic environmental similarity requires the probability of some bidder i winning the hth unit with bid
b to converge uniformly to the probability of any bidder j winning the h′th unit with bid b, for all i, j, h, h′, b.
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applicable to the procurement of production factors: if service A and service B are delivered

by the same provider, the manufacturer incurs cost savings, and similarly for services A and C.

However, services B and C, if delivered by the same provider cause additional costs, e.g. because

of a substitutability paired with a high contingency risk. If all three services A, B, and C were

delivered by the same provider, this could be modelled precisely: cost savings from A and B, A

and C, and additional cost from B and C enter the cost function, plus an additional cost savings

term to account for the interaction of A, B, and C together.

More generally, a cost function graph of this class is such that each package has a cost

relation to all packages that are subsets of itself; and these cost relations are achieved with a

minimal number of edges, i.e. there are directed paths from each package S to its subsets of size

|S|−1 only. The following introduces some additional notation needed to generate results on

these special graphs, including some closed form solutions.

Definition 20 (Levels). Let x, y ∈ 2N .

(i) x ⊂r y := {x | x ⊆ y, |y|−|x|= r}. Similarly, y ⊃r x := {y | y ⊇ x, |y|−|x|= r}. I say y is r

levels above x, or x is r levels below y.

(ii) x ⊂≥r y := {x | x ⊆ y, |y|−|x|≥ r}. Similarly, y ⊃≥r x := {y | y ⊇ x, |y|−|x|≥ r}. I say y

is at least r levels above x, or x is at least r levels below y.

(iii) x ⊂≤r y := {x | x ⊆ y, |y|−|x|≤ r}. Similarly, y ⊃≤r x := {y | y ⊇ x, |y|−|x|≤ r}. I say y

is at most r levels above x, or x is at most r levels below y.

Note that x ⊃0 y implies x = y.

Definition 21 (Complete CFG). A CFG is complete if and only if for each S, for all γ ⊂1 S,

we have (S, γ) ∈ G, and for all other γ ⊂≥2 S, and for all γ 6⊆ S, we have (S, γ) 6∈ G (see Fig. 3

in Appendix C.3).

Lemma 3 (Subadditivity in complete CFG). Suppose the CFG is complete. If the incremental

marginal cost satisfies

∆c(q, S) ≥ 0 ∀S : |S| = 1 and ∆c(q, S) ≤ 0 ∀S : |S| > 1

then the marginal cost is subadditive.

The following lemma makes the crucial connection between the supply function graph and

the overall allocation per variety.

Lemma 4 (φ-mapping for complete SFG). Let YS denote the overall amount of bundle S allo-

cated. Given the supply function graph defined above, it holds that

YS = φS({yqS}) =

n−|S|∑
r=0

∑
q,γ⊃rS

(−1)ryqγ

Duality then implies
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Corollary 2 (ψ-mapping for complete SFG).

ψ({zS}) =

|S|−1∑
r=0

∑
γ⊂rS

(−1)rzγ

Following Corollary 1, the term
∑|S|−1

r=0

∑
γ⊂rS(−1)rzγ describes the incremental price gain

from selling all objects in S together in package S. In some cases the seller may wish to specify

positive price increments. The subsequent corollary provides an additional characterisation

result for this case, and is immediate from Proposition 3.

Corollary 3. If µqS ≥ 0, and if yqS 6= 0, then zS ≥ zγ ∀γ ⊆ S.

While a very general class of supply function graphs allow me to solve the partitioning

problem, closed form solutions simplify the implementation of supply function graphs.

3.4 Complementarities and packaging costs between identical objects

If the market designer anticipates complementarities between identical objects, they may

want to allow bidders to submit specific bids on packages containing those identical objects. To

accommodate this, I simply introduce different notation relabelling identical objects. I demon-

strate this “preprocessing” with an example. Suppose there are two distinct varieties A and B

with supply ΩA = ΩB = 2. The two units of variety A may either be complementary for the

buyer or a packaging cost may be associated with the multiset {AA}, i.e. the auctioneer wants to

allow for the multiset {AA} to be treated as a package with a separate price p(AA) 6= 2p(A). An

admissible XOR-bid is a vector b := (viA, v
i
B, v

i
AA, v

i
AB), and, as usual, each bidder may submit

a finite list of these XOR-bids. The relabelling is done by the auctioneer for the workings of the

mechanism: bids are simply processed differently, but bidders and the seller are not presented

with relabelled objects. I reformulate the setup such that each unit of supply of variety A obtains

a different index, i.e. we have N := {A1, A2, B}, and a package is defined simply as S ⊆ N . To

process the bid vector correctly, it is augmented as b̃ = (viA1
, viA2

, viB, v
i
A1A2

, viA1B
, viA2B

, viA1A2B
),

where viA1
= viA2

= viA, viA1A2
= viAA, viA1B

= viA2B
= viAB, and viA1A2B

= max{viAA, viAB}.
The seller submits supply functions fA, fB, fAB, and fAA, and a supply function graph

defining the cost relations between those packages. Note that here only one admissible supply

function graph exists (see Fig. 4 in Appendix C.3). The supply functions and the supply function

graph are then augmented as follows. The auctioneer defines supply functions fA1 , fA2 , fA1B,

fA2B, fA1A2 , fA1A2B such that µ1A1
= µ1A, µ1A2

= µ2A, µ1A1B
= µ1AB, µ1A2B

= µ2AB, and µ1A1A2
=

µ1AA. All other steps heights µqS are set to ∞ and fB remains the same (step lengths are

normalised to one). The supply function graph is augmented as shown in Fig. 5 in Appendix C.3.

Note that fA1A2B may be omitted, unless the seller wants to define a packaging cost associated

with AAB. However, in that case the bidders should be offered to submit a separate bid price

for viAAB as well.

The linear programming arguments leading to Proposition 1, Corollary 1, and Theorem 1

can then be applied as before. One thing to note are the auction prices: solving the auction, the

output is zA1 = zA2 =: zA, zB, zA1A2 =: zAA, zA1B = zA2B =: zAB, (and zA1A2B). The fact that
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prices for identical objects are the same follows from the surplus constraints of the dual DLP,

keeping in mind the preprocessing rules for values (e.g., viA1
= viA2

= viA).

4 Distinct complements and packaging costs

Equilibrium existence in the presence of complementarities is not well understood in the

literature, but important contributions have been made in recent years. SY establish existence

of a non-linear pricing Walrasian equilibrium when buyers and the seller have superadditive

values.21 I extend their ascending procedure to establish existence of an integer-valued equilib-

rium in my setting, restricting supply to one unit per variety. If the seller’s costs are expressed

through incremental marginal cost functions and CFGs, an equilibrium can also be found via

linear programming.

For “gross substitutes and complements” preferences, existence of a linear pricing Walrasian

equilibrium was shown in [28], and generalised by [31]. Both of these classes of preferences

are generalised by the concept of demand types introduced in [2]. [9] study pricing equilib-

ria for economies where buyers have graphical valuations with pairwise complementarities or

substitutabilities, and [10] establish existence of a linear pricing Walrasian equilibrium for an

environment where one unit per variety is sold and bidders have sign-consistent tree valuations.

In all those studies, the seller cannot express preferences over the partitioning of supply.

The environment is restricted now such that Ωj = 1 for all j, i.e. one unit per variety is

for sale. A set of packages is now characterised by k ∈ {0, 1}|2N |−1. Each bidder’s aggregate

value function is identical to his marginal value function vl(1, S), S ∈ 2N . I omit the first

argument and define bidder l’s value function as vl : 2N → Z+. Every buyer’s value function is

superadditive, and his utility is quasi-linear. The seller’s marginal cost function is identical to

her incremental marginal cost for the first unit, i.e. c0(1, S,k−S) = ∆c(1, S) for all k−S . Again,

I simplify and define the seller’s marginal cost from selling a package S ∈ 2N as c0 : 2N → Z+.

The seller’s aggregate cost is defined as before and simplifies to C0(k) =
∑

S∈2N c
0(S)kS . The

seller’s marginal cost function is subadditive and her utility is quasi-linear.

For comparability with SY, I use a different notation for sets of packages: instead of a

vector k, I view a set of packages as a partition δ of N into packages, i.e. δ = {A1, . . . , Ak}
where At ⊆ N, t = 1, . . . , k, At1 ∩ At2 = ∅ for all At1 6= At2 , and

⋃k
t=1At ⊆ N . As before,

K denotes the universe of all partitions of N . Consequently, the seller’s profit is given by

u0(δ, p) =
∑

S∈δ
(
p(S)− c0(S)

)
when she sells the set of packages δ.

The definitions of demand and supply correspondences, and indirect utility and profits carry

over from the previous section. Note that an allocation π = (π(0), π(1), . . . , π(L)) can also

be interpreted as a partition δ of N defined by δ = {π(l)|π(l) 6= ∅ and l ∈ L0}, where π(l)

disappears if it is the empty set. The package-linear pricing Walrasian equilibrium coincides

with SY’s non-linear pricing Walrasian equilibrium.

21[29] also propose an incentive-compatible mechanism for their setting. Results in a similar spirit are estab-
lished in [15] for unimodular demand types. However, as I show in Appendix B, in SY’s and my setting the seller’s
demand type is not unimodular.
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4.1 Modelling the seller’s preferences

The difference of this restricted environment to [29] are the seller’s preferences. SY describe

their seller as “revenue-maximising”, while I model a profit-maximising seller. Examining how

the models relate, I make two observations. First, note that in SY one needs to distinguish

between the seller’s utility and true reserve prices, whereas my reserve prices simply correspond

to the seller’s marginal cost function. Second, SY’s seller preferences can be reformulated such

that the seller acts as a profit-maximiser with a well-defined cost function.

In SY, the seller has a “reserve price” function v0 : 2N → Z+. If she doesn’t sell a package

S, v0(S) is also the “utility” (or “revenue”) she derives from keeping S. v0 is assumed to be

superadditive. Example 1 demonstrates the subtlety in defining the seller’s value functions and

reserve price function when they are strictly super- or subadditive.

Example 1. I revisit the seller from Section 1.1. She possesses the bundle {AB} which is worth

60 to her, and she values good A alone at 10, and good B alone at 20. Then, her reserve price for

good A should be 40: at this price, she is indifferent between keeping the bundle and selling good

A alone. Similarly, the reserve price for good B should be 50. In SY’s basic ascending auction,

by allowing the seller to choose her supply set given the current prices, these reserve prices are

implicit. If (pA, pB, pAB) are the auction prices, the seller chooses to sell good A individually

only if pA + 20 ≥ 60 and pA + 20 ≥ pAB, i.e., good A’s true reserve price is 60− 20 = 40.

In my model, the seller’s reserve price for a bundle corresponds to the marginal cost she

incurs when supplying that bundle. If she is selling a set of packages, the cost of supplying the

set is the sum of marginal costs of packages contained in the set. In contrast to SY, the cost

of supplying a set of packages depends on the partition of supply into packages, where each

package is allocated to a different bidder. I now describe the relationship between SY’s seller

and mine formally. Let Sc denote the complement for any set S ∈ 2N , i.e. Sc = N \ S. First, I

state the definition of the dual of a set function f : 2N → R.22

Definition 22. For any bundle S ∈ 2N , given f : 2N → R with f(∅) = 0, define the transfor-

mation:

g(f, S) = f(N)− f(Sc)

g(f, ·) is called the dual of f . Note that g(f,N) = f(N).

Definition 23 (Set-cover submodularity). Given a finite set N , and a function f : 2N → R, f

is set-cover submodular if ∀ S1, S2 ∈ 2N with S1 ∪ S2 = N

f(S1) + f(S2) ≥ f(S1 ∪ S2) + f(S1 ∩ S2)

If the inequality sign in the above equation is reversed, f is set-cover supermodular, and if

the equation holds with equality f is set-cover modular.

Note that set-cover submodularity is weaker than submodularity, because it is only required

for every two subsets of N the union of which fully covers N . In particular, set-cover sub-

22This is standard in matroid theory, see e.g. [18] or [14].
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modularity does not imply subadditivity. However, the following lemma exhibits a connection

between superadditive and set-cover submodular functions.23

Lemma 5. Given a superadditive (subadditive) function v0 : 2N → R, its dual c∗(v0, ·) is

set-cover submodular (set-cover supermodular).

The following proposition relates SY’s and my model.

Proposition 4. Let the seller’s preferences be represented by a reserve price function v0 : 2N →
Z+, v0(∅) = 0. The seller’s objective maximising revenue as defined in SY is equivalent to

maximising quasi-linear profits with cost function C0 : K→ Z+, where

(i) marginal costs c0 : 2N → Z+ are such that c0 is the dual of v0

(ii) C0(δ) = c0
(⋃

S∈δ S
)

From (i) and Lemma 5 it follows that c0 is set-cover submodular. A set-cover submodular

cost function can have strictly subadditive and strictly superadditive elements, as shown in

example 3 in the appendix. Property (ii) in Proposition 4 states that the seller in SY only cares

about which objects are contained in the set of objects she sells overall, in contrast to my seller

whose preferences take into account how objects are partitioned among buyers. Thus, even with

identical marginal cost functions, their and my ascending auction may generate different results.

4.2 The ascending auction and equilibrium existence

I use a modified version of the basic ascending procedure by SY to determine an indivisible,

package-linear Walrasian equilibrium. The rules of my ascending procedure are identical to SY

on the bidders’ side, but differ for the seller. Bidders bid straightforwardly in this auction: in

each round, every bidder bids as if the current round was the last round of the auction, i.e. he

maximises his profits given the current auction prices. Let p(t, S) denote the price of bundle

S ∈ 2N at time t. Bidder l bids straightforwardly with respect to his valuation function vl if

at every time t ∈ Z+ for any price vector (pricing function) p(t), he bids Al(t) ∈ Dl(p(t)) =

arg maxS⊆N
{
vl(S)− p(t, S)

}
. I require Al(t) = ∅ when ∅ ∈ Dl(p(t)).

In the ascending procedure the seller states her supply and bidders state their demand at

current auction prices. If a package is overdemanded, the price on this package is increased by

one in the next round. The procedure stops as soon as no package is overdemanded. Formally,

the procedure is described as follows:

Step 1: The seller states her initial reserve prices c0, and the auctioneer fixes the initial price

vector p(0) : 2N → Z such that p(0, S) = c0(S) for every S ∈ 2N . Set t = 0 and continue with

step 2.

Step 2: In each round of the auction process t = 0, 1, . . . , the auctioneer announces the current

price vector p(t) and chooses a supply set δ ∈ S(p(t)). Subsequently, every bidder l reports

his demand Al(t) given the current price vector p(t). Then, the auctioneer determines if any of

the packages are overdemanded. Package S is overdemanded with respect to supply set δ and

reported demand bundles Al, l ∈ L, if it is demanded by more than one bidder, or demanded by

23Set-cover submodular and set-cover supermodular functions can both be subadditive or superadditive.
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one bidder but not in the supply set δ. If no package is overdemanded, continue with step 3. If

some package is overdemanded, increase the price of every package S that is overdemanded with

respect to δ and Al, l ∈ L by 1, i.e. p(t + 1, S) = p(t, S) + 1. Every other price p(t, S′), S′ 6= S

remains the same. Increase the counter t = t+ 1 and continue with step 2.

Step 3: Every package S ∈ Al(t) is allocated to bidder l at price p(t, S). If there is a package

B ∈ δ(t) that is not demanded by any bidder at p(t), B remains with the seller if p(t, B) = c0(B).

If p(t, B) > c0(B), B is allocated for price p(t, B) to a bidder who reported B in his demand set

in a previous round was among the last to forfeit B. The auction terminates.

Theorem 2. If all bidders bid straightforwardly in this auction setting, the ascending auction

terminates in a package-linear Walrasian equilibrium after a finite number of rounds.

Equilibrium existence follows for the model from section 2 when restricting supply to one

unit per variety.

Corollary 4. When Ωj = 1, j ∈ N , there always exists a package-linear Walrasian equilibrium.

Example 4 in the appendix further illustrates that my ascending auction and SY’s can lead

to different auction outcomes, even with identical marginal cost values for each package. I also

demonstrate that my ascending auction generalises SY’s procedure, because their seller is similar

to the buyers: she does not care about the partitioning of a set of varieties in her supply, as long

the reserve price is met. Thus, their seller can “disguise” as a buyer.

4.3 The ascending buy-back auction

Suppose the seller from SY’s model participates in my auction as a bidder. My seller’s own

supply is set to zero, but the SY-seller gives her supply to my seller, and then participates in

the ascending procedure attempting to buy back her objects. If she wins a bundle, this bundle

is effectively not sold, and she receives the price of every bundle sold to a different bidder. I

call this the “buy-back” auction to distinguish it from the standard SY-ascending auction. The

seller attempting to buy back her objects is called the SY-seller. I denote objects relating to the

SY-procedure with a superscript SY and show the following:

Lemma 6. SY’s auction and the buy-back auction terminate in the same allocation (up to ties).

Proposition 5. If the buy-back auction starts at prices p(−1, S) = v0(S) − 1 ∀S ∈ 2N , there

exists a price path that is identical in the buy-back auction and the SY ascending auction, and the

final auction prices at the end of this price path support the same allocation in both procedures.

Hence, the buy-back auction strictly generalises SY by adding my seller with subadditive

marginal costs over the partitioning of supply.

5 Conclusion

In many combinatorial auctions and markets, it is natural for the seller to have a preference

over the partitioning of objects among buyers. I establish a new graph structure to express

such preferences, while maintaining the tractability of the allocation problem through a linear
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programming formulation. To the best of my knowledge, mine is the first Walrasian-equilibrium

auction setting in which the seller can express preferences over allocations.

I characterise the existence of an indivisible Walrasian equilibrium with package-linear pric-

ing. Equilibrium prices have a modular structure: the price of a given package is tied to the

marginal costs of varieties or subsets of varieties contained in the given package, according to

the cost relations specified by the seller. In an environment with one unit per variety for sale,

superadditive utilities for buyers, and subadditive cost for the seller, I show that an integer-

valued package-linear pricing equilibrium always exists. I also uncover a relationship between

valuations and costs defined on sets of indivisible goods. In order to characterise properties of

these value and cost functions, I derive a new relationship between superadditive (subadditive)

set functions and their duals.

While my results are theoretical, I aim to inspire practical auction design. My methods

allow the seller to express vastly richer preferences than described in the previous literature

and in common auction design. At the same time, I guarantee transparency in pricing between

different packages that contain identical objects, and I address another important concern in

combinatorial auctions with non-linear pricing: if not all bundles receive bids, sensible bundle

prices can be easily constructed. Allowing sellers in practice to express richer preferences will

likely improve efficiency, and a more accurate representation of marginal costs may be helpful

to generate higher revenue.

Finally, the graph structure I developed in this paper may be of independent interest in other

allocation problems.
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Appendix

A Proofs

Proof of Lemma 1. This proof proceeds by analogy with [29] and [5] who show the result for

an environment with a single unit per variety for sale, and without explicit seller’s costs. Let A
denote the universe of all feasible allocations, i.e.

A :=

{
π ∈ Z|2

N |×|L0|
+ :+

l∈L
π(l) = k for some k ∈ K, and π(0) = N − k∗

}

(p∗, π∗) is a package-linear pricing Walrasian equilibrium, so for any bidder l ∈ L and any

allocation π′ ∈ A, we have

V l(π∗(l))−
∑

S∈π∗(l)

p∗(S) ≥ V l(π′(l))−
∑

S∈π′(l)

p∗(S)

Let +l∈L π
∗(l) = k and +l∈L π

′(l) = k′. I sum over l ∈ L and add and subtract the seller’s

cost

∑
l∈L

V l(π∗(l))− C0(k)−

(∑
l∈L

V l(π′(l))− C0(k′)

)

≥
∑
l∈L

∑
S∈π∗(l)

p∗(S)− C0(k)−

∑
l∈L

∑
S∈π′(l)

p∗(S)− C0(k′)

 (2)

Because π∗ ∈ S(p∗), we have, for all π′ ∈ A,∑
l∈L

∑
S∈π∗(l)

p∗(S)− C0(k) ≥
∑
l∈L

∑
S∈π′(l)

p∗(S)− C0(k′)

From equation (2), it follows that, for all π′ ∈ A,

∑
l∈L

V l(π∗(l))− C0(k)−

(∑
l∈L

V l(π′(l))− C0(k′)

)
≥ 0

and so π∗ is efficient.

Now let π′ be an efficient allocation. Then V (N ) =
∑

l∈L V
l(π′(l)) − C0(k′). It also holds

that V (N ) =
∑

l∈L V
l(π∗(l)) − C0(k) because π∗ is efficient as part of the equilibrium. The

equilibrium is also bidder-optimal and seller-optimal, given prices. Thus, we obtain the following

two inequalities:

V l(p∗) ≥ V l(π′(l))−
∑

S∈π′(l)

p∗(S), for all l ∈ L and

∑
l∈L

∑
S∈π∗(l)

p∗(S)− C0(k) = Π(p∗) ≥
∑
l∈L

∑
S∈π′(l)

p∗(S)− C0(k′)
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Suppose that one of these two inequalities were strict, then we would obtain

V (N ) =
∑
l∈L

V l(π∗(l))− C0(k)

=
∑
l∈L

V l(π∗(l))−
∑

S∈π∗(l)

p∗(S) +
∑

S∈π∗(l)

p∗(S)

− C0(k)

=
∑
l∈L
V l(p∗) + Π(p∗)

> V l(π′(l))−
∑

S∈π′(l)

p∗(S) +
∑
l∈L

∑
S∈π′(l)

p∗(S)− C0(k′)

=
∑
l∈L

V l(π′(l))− C0(k′)

= V (N ),

This is a contradiction, and consequently it holds that

V l(p∗) = V l(π′(l))−
∑

S∈π′(l)

p∗(S), for all l ∈ L and ,

Π(p∗) =
∑
l∈L

∑
S∈π′(l)

p∗(S)− C0(k′), i.e., π′ ∈ S(p∗).

It follows that (p∗, π′) is also a package-linear pricing Walrasian equilibrium. �

Proof of Proposition 1. To prove Proposition 1 I show two things:

(a) There exists a mapping from V l to a list {viS , S ∈ 2N , i ≤M}.

(b) Suppose we have an allocation to bidder l given by xiS , S ∈ 2N , i ∈ I l and mapped into

the multiset kl. Then the bidder’s value V l from this allocation is identical to the value

entering the auctioneer’s objective function.

(a) is straightforward given the structure on V l, which is defined by bidder l’s marginal values

vl(q, S), S ∈ 2N , q ≤ M . The bidder can simply make a set of bids {(vl(q, S), 1)S∈2N , q =

1, ...,M}. (b) follows from the bidder’s aggregation of marginal values. The value entering the

welfare maximising auctioneer’s objective is simply given by
∑

S,i∈Il v
i
Sx

i
S . An allocation to a

bidder is easily aggregated to the corresponding multiset such that klS =
∑

i∈Il x
i
S . For a given

allocation xiS , S ∈ 2N , i ∈ I l, the bidder’s overall value is defined as

V l({xiS}) = max
{xq,S}

∑
S∈2N

M∑
q=1

vl(q, S)xq,S s.t.

M∑
q=1

xq,S ≤
∑
i∈Il

xiS ,
∑
S∈2N

xq,S ≤ 1 ∀q, xq,S ∈ {0, 1}

Note that every allocation xiS , S ∈ 2N , i ∈ I l respects
∑

S x
i
S ≤ κi because of Definition 18,

and we can normalise κi = 1. Thus, xq,S = xiS is feasible in bidder l’ value aggregation for

some order of bids in I l. It follows immediately that V l({xiS}) ≥
∑

S,i∈Il v
i
Sx

i
S . Suppose that

V l({xiS}) >
∑

S,i∈Il v
i
Sx

i
S . Then, the order in the marginal value aggregation of at least two

packages must have switched compared to the auctioneer’s assignment I l. But all marginal
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values were available to the auctioneer to choose from, i.e. the bidder’s marginal value aggrega-

tion was a feasible allocation in the social welfare maximisation problem. Thus {xiS} was not

optimal. �

Proof of Proposition 2. Because the bidder’s marginal values are superadditive between

varieties and disjoint packages, the bidder could never gain from repackaging a given package

into two (or more) disjoint subsets of that package. Consequently, repackaging can only occur

if the bidder is allocated two disjoint packages and merges them.

Because the seller’s marginal cost is subadditive between varieties and disjoint packages, she

would never have a strict incentive to sell two disjoint packages separately if she could sell them

bundled in one larger package. For contradiction, suppose that the bidder received two disjoint

packages S1 and S2 on two different bids. Let vl(S1, q) and vl(S2, q
′) denote the corresponding

marginal values submitted, with q ≥ q′. Then, by assumption of MU-concave superadditive

preferences, it must be that

vl(S1 ∪ S2, q) ≥ vl(S1, q) + vl(S2, q
′) (3)

By subadditivity of the seller’s marginal cost, we have

c0(q, S1 ∪ S2,k−(S1∪S2,S1,S2)) ≤ c
0(q, S1,k−(S1∪S2,S1,S2)) + c0(q, S2,k−(S1∪S2,S1,S2)) (4)

Adding equation 3 and 4 yields the auctioneer’s (partial) social welfare objective

vl(S1 ∪ S2, q)− c0(q, S1 ∪ S2,k−(S1∪S2,S1,S2)) ≥ v
l(S1, q) + vl(S2, q

′)

− c0(q, S1,k−(S1∪S2,S1,S2))− c
0(q, S2,k−(S1∪S2,S1,S2)),

hence a contradiction to allocating S1 and S2 on two different bids. In case of indifference, the

bidder must also be indifferent between repackaging S1 and S2 to S1 ∪ S2, and leaving them as

separate bundles. �

Proof of Lemma 2. First, I show that given a supply function graph G, any supply function

allocation (yqS)S∈2N ,q≤q maps into a unique vector (kS)S∈2N . The proof is constructive; I provide

an algorithm to determine kS .
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ALGORITHM 1: Construct multiset from allocation on SFG

Input : supply function graph G = (V,E), allocation (yqS)S∈G,q≤q

Output: (kS)S∈2N

Initialise list of successfully visited nodes V := ∅.
while V 6= V do

Select a node S ∈ V \ V

if ∃A ∈ V \ V : ∃(A...S) then

skip S ;

else

kS =
∑q

q=1 y
q
S −

∑
A∈V :∃(A...S) kA ;

mark S as successfully visited: V = V ∪ S
end

end

To proof that algorithm 1 constructs a unique image from any permissible input, I demon-

strate that (a) algorithm 1 stops, (b) each node S is successfully visited at some point, (c) the

time at which S is successfully visited is irrelevant. That the mapping is linear is obvious from

the definition of kS in the algorithm.

(a) and (b) follow because Assumption 3(i) implies that there are no cycles in G. Thus, as

long as V 6= V , there exists some S ∈ V \ V for which the if-condition is false. Consequently,

all nodes are added to V at some point. It is without loss of generality to assume that the

algorithm does not get stuck in a trivial loop, i.e. it does not select a sequence of nodes that

allow no successful visit and are skipped and revisited indefinitely. (c) follows because once the

if-condition is false for a given node S, the set of nodes A ∈ V : ∃(A...S) remains unaltered.

Once S could be successfully visited, is does not matter when it is actually selected for the

successful visit, i.e. other nodes may be selected first.

The reverse mapping is straightforward. Given a supply function graph G, a multiset

k = (kS)S∈2N maps in the following supply function allocation: for all S ∈ 2N , yqSS = 1 ∀qS ≤∑
A:∃(A...S) kA and yqSS = 0 ∀qS >

∑
A:∃(A...S) kA. �

Proof of Proposition 3. To prove this proposition I use a slightly different formulation of the

auctioneer’s partitioning problem. The supply function graph required that whenever a step on

supply function fS is allocated, a step on every supply function fγ for all γ : ∃(S...γ) is allocated

as well. Therefore, I reformulate objective and constraints in the following way: Summing over

the steps q, I introduce the identity of the package due to which a step on a supply curve is

allocated. Formally, I call these steps q′(S); they are the steps which are allocated on a given

supply curve due to the allocation of package S. I suppress S in the problem; but it is important

that the steps q′ are different for each S.

Note that this problem formulation is not practical for solving the auction because the q′

would have to be linked to the corresponding package S, and additional rules would have to be

specified for which packages are allocated on which steps. However, this alternative problem

formulation is useful to find out more about the price structure.

With the new definition of q′, it holds that
∑

q′ y
q′

S = YS . I rewrite LP as follows:
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LP

max
{xiS ,y

q′
S }

∑
i,S

viSx
i
S −

∑
q′

yq
′

S

 ∑
γ:∃(S...γ)

µq
′
γ



s.t.


∑

S x
i
S ≤ κi ∀i bi constraint on bid size

yq
′

S ≤ lq
′
γ ∀q′,∀S, ∀γ : ∃(S...γ) uq

′
γ constraint on step size∑

i x
i
S −

∑
q′ y

q′

S ≤ 0 ∀S zS supply constraint

and all variables are non-negative. Then, the corresponding dual problem is

DLP

min
{bi,zS ,uqS}

∑
i

κibi +
∑

q′,S,γ:∃(S...γ)

lq
′
γ u

q′
γ


s.t.

{
bi + zS ≥ viS ∀i, S xiS surplus constraint∑

γ:∃(S...γ) u
q′
γ − zS ≥ −

∑
γ:∃(S...γ) µ

q′
γ ∀q′,∀S yq

′

S marginal cost constraint

and all variables bi, uq
′

S and zS are non-negative. From the marginal cost constraint it follows

that zS ≤
∑

γ:∃(S...γ)

(
uq
′
γ + µq

′
γ

)
for all S and for all q′. Complementary slackness implies that,

if yq
′

S > 0, zS =
∑

γ:∃(S...γ)

(
uq
′
γ + µq

′
γ

)
. As described above, q′ = q′(S) refers to the specific

steps on which package S is allocated. However, in the original problem formulation, it does not

matter which package is allocated on which step, because only the entirety of allocated steps is

relevant for the seller’s cost. Because q′(S) could indeed be any of the steps on fS , on which a

positive amount is allocated, the equality holds for all qγ ≤ q̃γ , when y
q̃γ
γ 6= 0. The inequality

holds for any q ≤ q because of the marginal cost constraint. �

Proof of Corollary 1. From CC 7 and CC 8 follows

µqS ≤ ψ({zS}) ≤ µq+1
S

Together with CSC 4, (i) follows. (ii) is immediate from Proposition 3 and CSC 4. �

Proof of Theorem 1. First, I note the complementary slackness conditions (CSC) from LP

and DLP. The CSC are standard in linear programming; they are derived and used by analogy

with [1], and the subsequent argument follows [5].

CSC 1 : If xiS 6= 0, then bi = viS − zS , for all i ∈ I, S ⊆ N .

CSC 2 : If
∑

S x
i
S < κi, then bi = 0, for all i ∈ I.

CSC 3 : If
∑

i x
i
S − φ({yqS}) < 0, then zS = 0, for all S ⊆ N .

CSC 4 : If yqS 6= 0, then uqS + µqS = ψ({zS}), for all q ≤ q, S ⊆ N .

CSC 5 : If yqS < lqS , then uqS = 0, for all q ≤ q, S ⊆ N .

I establish the following lemma to help characterise a solution of LP.
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Lemma 7. If {xiS , y
q
S} and {bi, uqS , zS}, respectively, are solutions to LP and DLP, {xiS , y

q
S}

and {bi, uqS , zS} satisfy the following “characteristic conditions”:

CC 1 :
∑

S x
i
S ≤ κi, for all i ∈ I.

CC 2 : yqS ≤ l
q
S, for all q ≤ q, S ⊆ N .

CC 3 :
∑

i,γ:∃(γ...S) x
i
γ ≤

∑
q y

q
S, for all S ⊆ N .

CC 4 : If zS > 0, then
∑

i,γ:∃(γ...S) x
i
γ =

∑
q y

q
S, for all S ⊆ N .

CC 5 : If viS − zS < maxS′ 6=S{viS′ − zS′ , 0}, then xiS = 0, for all i ∈ I, S ⊆ N .

CC 6 : If maxS{viS − zS} > 0, then
∑

S x
i
S = κi, for all i ∈ I, S ⊆ N .

CC 7 : If µqS < ψ({zS}), then yqS = lqS, for all S ⊆ N .

CC 8 : If µqS > ψ({zS}), then yqS = 0, for all S ⊆ N .

I also note again Corollary 1(ii): If yqS > 0, then for all q′ ≤ q, it holds that

ψ({zS}) = zS −
∑

γ:∃(S...γ),γ 6=S

(
uq
′
γ + µq

′
γ

)
(5)

The subsequent lemma makes the well known connection between a primal-dual solution and

Walrasian equilibrium.

Lemma 8. Prices {zS} given by the solution of DLP support the allocation {xiS , y
q
S} given by

the solution of LP as a package-linear pricing Walrasian equilibrium.

Proof. Assume the allocation {xiS , y
q
S} and prices {zS} are solutions of LP and DLP as defined

above. Then, by Lemma 7, conditions CC 1 - CC 8 hold. I show that CC 1 - CC 8, together

with the CSC and the constraints of LP and DLP, imply that the {zS} support {xiS , y
q
S} as a

package-linear pricing Walrasian equilibrium. I prove (a) that there is no surplus improvement

possible for any bid i, (b) that for a bidder who received a multiset of packages no surplus

improvement is possible from receiving a different partition of the multiset of packages, (c) that,

given a partition of the allocated supply and given the final auction prices, the seller cannot

improve her profit by allocating more or less of a given package, and (d) that, given a partition

of the allocated supply and given the final auction prices, the seller cannot improve her profit

by choosing a different partition of supply.

(a): If there is no positive surplus on any of the packages of a bid i, CC 5 ensures that this

bid is allocated nothing. CC 6 implies that, if a strictly positive surplus can be made on any of

the packages, the bid is allocated the maximum quantity bid for, and from CC 5 follows that the

maximum quantity is allocated only on packages that maximise the bid’s surplus. CC 1 ensures

that the maximum quantity bid for is always respected.

(b): A bidder does not desire to repackage goods that he received in a certain partition

(Proposition 2), or is prohibited from doing so, i.e. if he received the multiset of objects k, he

does not rearrange single varieties to obtain a different multiset k′ with k∗ = k′∗. However, I

still have to show that the bidder would not be strictly better off with a different partitioning

33



of supply at the given auction prices. Let k denote the multiset of objects received by bidder

l through the set of winning bids W l (this set contains only those bids of l with a strictly

positive allocation), i.e. k =
(∑

i∈Wl xiS
)
S∈2N . First, recall Proposition 1: given an allocation

k, the bidder’s value derived from k equals its contribution to social welfare as it appears in

the auctioneer’s objective, i.e. V l(k) =
∑

i∈Wl,S x
i
Sv

i
S . Then, the bidder’s utility is given by

ul(k, z) =
∑

i∈Wl,S(viS − zS)xiS . Suppose there is a different partitioning k′ 6= k where k∗ = k′∗,

with a corresponding set of winning bids W ′l and allocation {x′iS}, which gives bidder l strictly

higher utility, i.e. u(k′, z) =
∑

i∈W ′l,S(viS − zS)x′iS > u(k, z). There exist at least two bids

i, j ∈ W ′, for which x′iS 6= xiS and x′jS 6= xjS for some S. Let D := {i ∈ W l ∩W ′l : ∃S s.t. x′iS 6=
xiS}, i.e. D contains the winning bids in W which are also in W ′, but with some allocations

shifted to different packages. By the surplus constraint of DLP we have viS − zS ≤ bi for

all i ∈ D, S ∈ 2N ; so no additional surplus can be generated through shifting allocations on

those bids. Let C := W ′ \ W, i.e. the bids in W ′ that were not winning in the auction. By

the contraposition of CC 6 it must hold that zS ≥ viS for all i ∈ C, S ∈ 2N . It follows that

ul(k′, z) =
∑

i∈W ′,S
(
viS − zS

)
x′iS ≤

∑
i∈Wl,S b

i = ul(k, z), i.e. bidder l maximises his surplus

with the multiset received in the partition prescribed by the auction.

(c): If a step on supply curve fS is allocated, i.e. yqS > 0, then CC 8 implies ψ({zS}) ≥ µqS .

Together with equation (5) we have zS ≥
∑

γ:∃(S...γ),γ 6=S (uqγ + µqγ) + µqS , i.e. the seller always

sells package S at a weakly positive surplus. Furthermore, if zS > 0, it follows by CC 4 that∑
i,γ:∃(γ...S) x

i
γ =

∑
q y

q
S ∀S ⊆ N , i.e. the amount of all packages with cost relation to S sold

equals
∑

q y
q
S . Suppose zS > µqS+

∑
γ:∃(S...γ),γ 6=S (uqγ + µqγ)⇔ zS−

∑
γ:∃(S...γ),γ 6=S (uqγ + µqγ) > µqS ,

i.e. a strictly positive surplus is made on package S. Then, Proposition 3(i) implies that∑
γ:∃(S...γ)

(
uqγ + µqγ

)
−

∑
γ:∃(S...γ),γ 6=S

(
uqγ + µqγ

)
≥ zS −

∑
γ:∃(S...γ),γ 6=S

(
uqγ + µqγ

)
> µqS

and thus uqS + µqS > µqS . With CSC 5, uqS > 0 implies that the entire supply function step is

allocated. Conversely, let zS < µqS +
∑

γ:∃(S...γ),γ 6=S (uqγ + µqγ), i.e. a strict loss would be made

on a package. For contradiction, suppose yqS > 0. Then, by equation (5), ψ({zS}) < µqS , and

therefore, by CC 8, yqS = 0, a contradiction. Hence, the supply function step cannot be not

allocated at all. Finally, by CC 2, a supply step is never allocated more than its maximum step

size.

(d) I claim that, given a partition of supply that is a solution to LP, the seller cannot improve

her profit by choosing a different partition of supply. To see this, recall Lemma 2, which states

that the mapping from the allocation on the supply function graph to a multiset of packages,

i.e. (yqS)S∈2N ,q≤q → (YS)S∈2N , is one-to-one. In (c), I have shown that the seller cannot improve

upon the allocation on the supply function graph, given the dual prices. Then, it is immediate

that the resulting partition of allocated supply is seller-optimal also.

Using the lemma above, a standard argument establishes the theorem. OP denotes the value

of an optimal solution to P, OLP the value of an optimal solution to LP, and ODLP the value

of an optimal solution to DLP. First, let OP = OLP . Then, there exists {xiS , y
q
S} as an optimal

solution to IP and LP, and {xiS , y
q
S} is efficient. By Lemma 8, the dual variables {zS} of DLP

support this allocation as a package-linear pricing Walrasian equilibrium.
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Now suppose there exists an equilibrium, i.e. prices {zS} that support {xiS , y
q
S} as an equilib-

rium allocation. By Lemma 1, the allocation is efficient. Let bi := viS − zS for all i ∈ I : xiS > 0,

and let uqS := ψS({zS}) − µqS for all q ≤ qS : yqS > 0, S ∈ 2N . Note that the uqS are de-

fined recursively by equation 5: for j ∈ N , we have ψ({zj}) = zj , so uqj := zj − µqj for all

q ≤ qj , j ∈ N . Given the uqj , one can go on to define uqS for all S, for which it holds that for

all {γ : ∃(S...γ), γ 6= S}, γ ∈ N , and so on. The uqS are the seller’s surplus on each individual

supply step, and the bi are the buyers’ surplus on each bid. Because the {zS} are competitive

equilibrium prices, it must be that uqS , b
i ≥ 0. Efficiency implies that

∑
i,S v

i
Sx

i
S −

∑
S,q µ

q
Sy

q
S ≥

∑
i,S v

i
S(xiS)′ −

∑
S,q µ

q
S(yqS)′ ∀ (xiS)′, (yqS)′

i.e. uqS and bi are feasible in DLP and {xiS , y
q
S} are optimal in LP. By strong duality it holds

that OLP = ODLP . Thus, we have

OLP = ODLP

(1)

≤
∑
i

κibi +
∑
q,S

lqSu
q
S

(2)
=

∑
S,i:xiS=κ

i

κi(viS − zS) +
∑

q,S:yqS=l
q
S

lqS(ψS({zS})− µqS)

(3)
=

∑
S,i:xiS=κ

i

κi(viS − zS) +
∑

q,S:yqS=l
q
S

lqS(zS −
∑

γ:∃(S...γ),γ 6=S

(
uq
′
γ + µq

′
γ

)
− µqS)

(4)
=
∑
S,i

xiS(viS − zS) +
∑
S

YSzS −
∑
q,S

yqSµ
q
S

+
∑
S

 ∑
γ:∃(γ...S),γ 6=S

Yγ

 zS −
∑
S

 ∑
γ:∃(γ...S)

Yγ

 ∑
γ:∃(S...γ),γ 6=S

(
uq
′
γ + µq

′
γ

)
︸ ︷︷ ︸

:=F

(5)
=
∑
i,S

viSx
i
S −

∑
S,q

µqSy
q
S

(6)
= OIP

(1) follows from DLP’s objective function. (2) follows by definition of bi and uqS above. (3)

follows by equation (5). (4) follows because the amount on a given supply curve allocated equals

the sum of the quantities of all packages sold that have a cost relation to the given supply curve,

i.e.

∑
q,S:yqS=l

q
S

lqSzS =
∑
S

YSzS +
∑
S

 ∑
γ:∃(γ...S),γ 6=S

Yγ

 zS

(5) follows because
∑

i x
i
S = YS for all S for which zS > 0, and because, using Proposition 3
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(substituting for zS) and simplifying sums, we have

F =
∑
S

YS

 ∑
γ:∃(S...γ)

(
uq
′
γ + µq

′
γ

)−∑
S

 ∑
γ:∃(γ...S)

Yγ

(µq′S + uq
′

S

)
= 0

The previous equation is equal to zero simply because of the distributive law in arithmetic.

Finally, (6) follows from the definition of the auctioneer’s indivisible allocation problem P.

I have shown that OLP ≤ OIP . It also holds that OLP ≥ OIP because any solution of IP is

feasible in LP, and the claim follows.

�

Proof of Lemma 7. CC 1 and CC 2 follow from the constraint on the bid size, and the

constraint on the step size in LP. CC 3 is obtained by summing up the bundle S supply con-

straints from LP. In particular, I sum over all γ : ∃(γ...S). By definition of the supply functions,∑
γ:∃(γ...S) YS =

∑
q y

q
S for any package S ⊆ N . CC 4 follows from CSC 3: the contrapositive of

CSC 3 states that, if zS > 0,
∑

i x
i
S − φ({yqS}) = 0 (> 0 is ruled out by the supply constraint of

LP). If zS > 0, then by Proposition 3, Requirement 1, and because uqS ≥ 0 ∀S, y, it holds that

zγ > 0 for all γ : ∃(γ...S) on which some yqγ is allocated. Therefore, I can take the sum of tight

supply constraints across γ : ∃(γ...S) (if xiγ > 0 for some i, then we must also have yqγ > 0 for

some q); we obtain CC 4. CC 5 is derived from CSC 1: Assume xiS > 0 and xiS′ > 0 for some

S 6= S′. Then, by CSC 1, viS − zS = viS′ − zS′ = bi. So if viS − zS < viS′ − zS′ for some S′, then

xiS = 0. Also note that it always holds that bi ≥ 0 and bi ≥ viS − zS , by the surplus constraint

of DLP. So if viS − zS < 0, then it cannot be that viS − zS = bi, and thus xiS = 0. Together,

we obtain CC 5. bi ≥ viS − zS also implies that, if maxS{viS − zS} > 0, then bi > 0. The

contrapositive of CSC 2 then implies
∑

S x
i
S = κi, and thus CC 6. The marginal cost constraint

of DLP is uqS ≥ ψ({zS}) − µqS . Thus, if µqS < ψ({zS}), then uqS > 0, and so CC 7 follows by

the contrapositive of CSC 5. Finally, if µqS > ψ({zS}), then we cannot have uqS = ψ({zS})−µqS ,

because uqS is positive. Hence, the contrapositive of CSC 4 implies yqS = 0, and therefore CC 8. �

Proof of Lemma 3. First, note that for complete CFG, the definition of marginal cost

simplifies to

c0(k, S,k−(B1,...,Bt)) =
∑
γ⊆S

∆c(qγ , γ), where qγ :=
∑

A⊃γ,A∈2N\(B1,...,Bt)

kA + k

Let B := (S1 ∪ S2, S1, S2) and let qγ :=
∑

A⊃γ,A∈2N\B kA + k. Then we have, for any disjoint
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sets S1, S2 ∈ 2N ,

c0(k, S1,k−B) + c0(k, S2,k−B)

=
∑
γ⊆S1

∆c (qγ , γ) +
∑
γ⊆S2

∆c (qγ , γ)

=
∑

γ⊆S1∪S2

∆c (qγ , γ)−
∑

γ⊆S1∪S2,γ 6⊆S1,S2

∆c (qγ , γ)

≥
∑

γ⊆S1∪S2

∆c (qγ , γ)

=c0(k, S1 ∪ S2,k−S)

�

Proof of Lemma 4. Let W ⊆ S ⊆ δ ⊆ N , and let y(S, δ, t,W ) denote the amount allocated

on supply function fS that is due to the allocation of a bundle δ ⊃t W , t levels above W . Let

dist(x, y) := ||x|−|y|| for any x, y ⊆ N . I first establish a series of facts.

Fact (1). Given any reference supply set W ⊆ S, I can write the amount allocated on supply

function fS as

∑
q

yqS =

n−|W |∑
t=dist(S,W )

∑
δ⊃tW

y(S, δ, t,W ).

Lemma 9. Given are sets x ⊆ z ⊆ N , and a number q with |x|≤ q ≤ |z|. Let R := {y ⊆ N |x ⊆
y ⊆ z, |y|= q}. Then, |R|=

(|z|−|x|
q−|x|

)
.

Proof. This is a standard combinatorics problem. First, note that q − |x| objects can be added

to x such that y contains q objects. These objects also need to be different from those contained

in x, and they need to be contained in z. Hence, there are |z|−|x| different objects, of which

q − |x| many can be added to x. This is possible in
(|z|−|x|
q−|x|

)
different ways.

Fact (2). Given S, δ,W , let r := dist(S,W ) and t := dist(δ,W ). By Lemma 9 above, there

exist
(
t
r

)
supply functions fS relative to fW , on which the amount y(S, δ, t,W ) is allocated. Of

course, t (or δ or W ) is redundant; it is only written for clarity of exposition.

Fact (3). y(S, δ, t,W ) does not depend on S. If a step on supply function fδ is allocated, then

a step on each supply function γ ⊆ δ is allocated. Thus, the allocation of bundles on supply

functions in the graph “between” W and δ due to the allocation of bundle δ has to be the same

amount.

Fact (4). For any t ≥ 1, we have, by the binomial theorem,
∑t

r=0

(
t
r

)
(−1)r = 0.
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We now have
n−|S|∑
r=0

∑
q

∑
γ⊃rS

(−1)ryqγ

=

n−|S|∑
r=0

∑
γ⊃rS

(−1)r
∑
q

yqγ

(1)
=

n−|S|∑
r=0

∑
γ⊃rS

(−1)r
n−|S|∑

t=dist(γ,S)

∑
δ⊃tS

y(γ, δ, t, S)

=

n−|S|∑
r=0

∑
γ⊃rS

(−1)r
n−|S|∑
t=r

∑
δ⊃tS

y(γ, δ, t, S)

(2),(3)
=

n−|S|∑
r=0

(−1)r
n−|S|∑
t=r

(
t

r

) ∑
δ⊃tS

y(·, δ, t, S)

(4)
=

n−|S|∑
t=0

∑
δ⊃tS

y(·, δ, t, S)

t∑
r=0

(−1)r
(
t

r

)
=

∑
δ⊃0S

y(·, δ, 0, S)

0∑
r=0

(−1)r
(

0

r

)
= y(·, S, 0, S)

= YS

�

Proof of Lemma 5. To simplify notation, I write c∗(v0, S) as c∗(S) for any S ∈ 2N . Let

Sc
1, S

c
2 ∈ 2N and Sc1∩Sc2 = ∅. Note that c∗(N) = v0(N). Also note that Sc1∩Sc2 = ∅ ⇔ S1∪S2 =

N . Because v0 is superadditive we have

v0(Sc
1 ∪ Sc

2) ≥ v0(Sc
1) + v0(Sc

2)

⇔ v0(N)− c∗((Sc
1 ∪ Sc

2)c) ≥ 2v0(N)− c∗(S1)− c∗(S2)

⇔ c∗(S1) + c∗(S2) ≥ c∗(S1 ∪ S2) + c∗(S1 ∩ S2)

The proof for subadditive v0 is analogous to the above. �

Proof of Proposition 4. In SY, the seller’s supply correspondence is defined as

SSY (p) = arg max
δ∈K

{∑
A∈δ

p(A)

}

In my ascending auction the seller’s supply correspondence is defined as

S(p) = arg max
δ∈K

{∑
A∈δ

(
p(A)− c0(A)

)}

By definition of SY’s ascending auction, p(B) = v0(B) for any bundle B that is assigned to the

seller during the procedure; and from the proof of SY’s Theorem 2, we know that p(π(0)) =

v0(π(0)). In partition δ, where bundle B ∈ δ goes to the seller, we have p(B) = v0(B). Hence,
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we have

SSY (p) = arg max
δ∈K

 ∑
A∈δ\B

p(A) + v0(B)


= arg max

δ∈K

 ∑
A∈δ\B

p(A) + v0(B)− v0(N)


= arg max

δ∈K

 ∑
A∈δ\B

p(A)− c∗(N \B)


= arg max

δ∈K

 ∑
A∈δ\B

p(A)− c∗
 ⋃
A∈δ\B

A


Part (i) and (ii) of the proposition immediately follow, as c∗ is by definition the dual of v0, and

c∗
(⋃

A∈δ\B A
)

may be interpreted as the seller’s cost function. �

Proof of Theorem 2. The proof proceeds exactly as the proof of Theorem 2 in [29]. The

auction procedure terminates at some time t∗, because demand will cease entirely as soon as the

price of a package exceeds the package’s maximum value among all bidders. The price of the

empty package is always zero.

Let p∗ = p(t∗) and let A∗l = Al(t
∗). Furthermore, let δ∗ = δ(t∗) ∈ S(p∗) denote the supply set in

S(p∗) that is chosen at time t∗ by the seller. First, I establish an allocation π∗ such that (p∗, π∗)

constitutes a package-linear Walrasian equilibrium. Because at p∗ no package is overdemanded,

for any bidder l ∈ L with A∗l 6= ∅, his demand A∗l must be in δ∗. If
⋃
l∈LA

∗
l = N holds, define the

allocation as follows: π∗(l) = A∗l for all l ∈ L and π∗(0) = ∅. Then (p∗, π∗) is a package-linear

Walrasian equilibrium.

If
⋃
l∈LA

∗
l ⊂ N , there is at least one package B in the chosen supply set δ∗ which is not

demanded by any bidder at time t∗ (in SY such package is called a squeezed-out package). Now

we have to distinguish multiple cases:

Case 1: p∗(B) = c0(B)

The final auction price of bundle B is still fixed at the initial reserve price. This means, B was

never overdemanded. If it was demanded in some earlier round by some bidder, this bidder

demands now a different, more profitable package. Let

δ∗0 = {B ∈ δ∗ | p∗(B) = c0(B) and B 6= A∗l for all l ∈ L}

be the set of all squeezed-out packages. Let π∗(0) =
⋃
B∈δ∗0

B and allocate π∗(0) to the seller (at

zero cost). Let K∗0 denote the universe of all partitions of the elements contained in δ∗0 . Because

δ∗ ∈ S(p∗), we have ∑
B∈γ

[
p∗(B)− c0(B)

]
≤
∑
B∈δ∗0

[
p∗(B)− c0(B)

]
= 0

for all γ ∈ K∗0. Trivially, the partition of objects retained by the seller is irrelevant, and the
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seller is indifferent between selling π∗(0) or not.

Case 2: p∗(B) > c0(B)

Because p∗(B) > c0(B), package B was demanded by some bidder in an earlier round. I denote

by t the last round in which B was demanded by some bidder l. Just as in SY, the auction rule

determines that package B may be allocated to bidder l, at the current price p∗(B). Hence, we

need to demonstrate that it is still profit-maximising for bidder l to receive package B at the

current price. By the auction rule and Assumption 2, we must have

V l(p(t)) = ul(B, p(t)) = vl(B)− p(t, B) ≥ 1 (6)

and p∗(B) = p(t, B) or p∗(B) = p(t, B) + 1. Given equation (6) we have for bidder l, who is

allocated the squeezed-out package B,

ul(B, p∗) = vl(B)− p∗(B) ≥ 0 (7)

By analogy with SY, I distinguish the following two sub-cases.

Case 2A: If A∗l = ∅, simply assign bidder l the squeezed-out bundle, i.e. π∗(l) = B.

A∗l ∈ Dl(p∗) and A∗l = ∅ imply that V l(p∗) = 0. By definition of V l we have V l(p∗) ≥ ul(B, p∗).
Together with equation (7) this implies ul(B, p∗) = 0, and hence π∗(l) ∈ Dl(p∗).

Case 2B: If A∗l 6= ∅, we assign bidder l what he demanded at time t∗ and the squeezed-out

bundle, i.e. π∗(l) = A∗l ∪B. Because the seller chose a supply set δ∗ 3 {A∗l , B}, we have

p∗(A∗l )− c0(A∗l ) + p∗(B)− c0(B) ≥ p∗(π∗(l))− c0(π∗(l)). (8)

Superadditivity of bidder l’s utility implies that

vl(π∗(l)) ≥ vl(A∗l ) + vl(B). (9)

Subadditivity of the seller’s cost implies that

c0(π∗(l)) ≤ c0(A∗l ) + c0(B). (10)

And because A∗l ∈ Dl(p∗), we have

vl(A∗l )− p∗(A∗l ) ≥ vl(π∗(l))− p∗(π∗(l)) and (11)

vl(A∗l )− p∗(A∗l ) ≥ 0. (12)

From (8) and (10) follows

p∗(A∗l ) + p∗(B) ≥ p∗(π∗(l)) (13)
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Then, using equation (13), (9), and (7) (in this order), we obtain

vl(π∗(l))− p∗(π∗(l)) ≥ vl(π∗(l))− [p∗(A∗l ) + p∗(B)]

≥
[
vl(A∗l )− p∗(A∗l )

]
+
[
vl(B)− p∗(B)

]
≥ vl(A∗l )− p∗(A∗l ),

Using equation (11), it follows that

vl(π∗(l))− p∗(π∗(l)) = vl(π∗(l))− [p∗(A∗l ) + p∗(B)]

= vl(A∗l )− p∗(A∗l ),

and therefore

p∗(π∗(l)) = p∗(A∗l ) + p∗(B). (14)

Bidder l is therefore happy to receive bundle B in addition to his demanded bundle A∗k, and pay

the price that is set for the bundle π∗(l).

Exactly as in SY, this process can be repeated for every squeezed-out bundle B with p∗(B) >

c0(B). Every bidder l who is not allocated any squeezed-out bundle receives his demanded

package, i.e. π∗(l) = A∗l . δ
∗ is a partition of N chosen by the seller, and thus (π∗(0), . . . , π∗(L))

is an allocation of N . The seller’s profit is, from equation (14),∑
l∈L

[
p∗(π∗(l))− c0(π∗(l))

]
=
∑
A∈δ∗

[
p∗(A)− c0(A)

]
= Π(p∗)

and consequently, the allocation π∗ is in the seller’s supply correspondence. It follows that

(p∗, π∗) is a package-linear pricing Walrasian equilibrium. �

Proof of Lemma 6. In SY, an allocation π is efficient if it holds for every allocation π′ that∑
l∈L0

[
vl(π(l))

]
≥
∑
l∈L0

[
vl(π′(l))

]
(15)

In my model, an allocation π is efficient if for every allocation π′ it holds that∑
l∈L

[
vl(π(l))− c0(π(l))

]
≥
∑
l∈L

[
vl(π′(l))− c0(π′(l))

]
(16)

The SY auction terminates in an allocation π that is efficient in the sense of their definition

(theorem 2 in SY), i.e. if equation (15) holds for all allocations π′. In my model, the ascend-

ing auction procedure also terminates in an efficient allocation π in the sense of my definition,

i.e. if equation (16) holds for all allocations π′. The efficient allocation in the buy-back auc-

tion procedure is equivalent to the efficient allocation in SY: setting c0(S) := 0 ∀S ∈ 2N and

adding the seller as a participant in the auction, i.e. running the auction with the set of buyers

L′ = L + {0} = L0, (15) and (16) are equivalent. The auction rules apart from the seller’s
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choosing of the supply set are identical in SY and my auction, so the claim follows. �

Proof of Proposition 5. Note that every conventional bidder bids identically in both

procedures, up to ties. I simply split up the SY-seller into 2n dummy bidders, denoted by

lS , S ∈ 2N . Define bidder lS ’s utility function as follows:

vlS (B) :=

{
v0(S) if B ⊇ S
0 otherwise

Each bidder lS has the highest bid on bundle S among all dummy bidders, because v0 is super-

additive. Let bidder lS demand bundle S whenever he weakly prefers to demand bundle S to

another bundle, but let him demand the empty set when she weakly prefers to do so.

Let the ascending auction start at t = −1 with starting prices p(−1, S) = v0(S)−1 ∀S ∈ 2N .

Let two instances of each bidder lS participate. Bidders lS , S ∈ 2N each demand bundle S. The

seller (my seller) offers some supply set. Regardless of the non-dummy bidders’ demand, each

bundle S ∈ 2N is overdemanded in t = −1, so prices in t = 0 are increased by one. The dummy

bidders all demand the empty set for all t = 0, 1, . . . , so if at some round t ≥ 0 the auction ends

with squeezed-out bundles, they can be allocated to the dummy bidders if they were the last

to demand them. It is without loss of generality to stipulate that such squeezed-out bundles

are allocated to dummy bidders (if they were the last to demand them), and not to regular

bidders who might have demanded them at t = −1 as well. Then, in all rounds t = 0, 1, . . . , the

supply correspondence and the demand correspondences are chosen to maximise identical profit

and utility functions in both auction procedures. Thus, the supply correspondence and demand

correspondences are identical in every round of both auction procedures, and it immediately

follows that an identical price path resulting in the same allocation exists. �

B The seller’s demand type

If all buyers have strong substitutes valuations and supply is fixed, it is well known that

Walrasian equilibrium exists. If the seller is partitioning a supply of different objects into

packages, however, her preferences are not strong-substitutes-between-packages under non-linear

(or package-linear) pricing (see also Footnote 7). Consequently, a Walrasian non-linear pricing

equilibrium need not exist. Example 2 in [29] (also [3]) illustrates this nicely: There are three

objects A,B,C for sale, one unit of each, and there are three bidders 1,2, and 3. The bidders’

values are given in Table 2, and the seller’s reserve prices are zero for all possible packages. It

can be verified that Walrasian equilibrium does not exists under linear pricing [3] or non-linear

pricing [29]. All bidders demand only one package, hence their valuation is trivially strong-

substitutes-between-packages type. However, the seller’s valuation is not strong-substitutes-

between-packages. The reason is simply that she may be induced by an infinitesimal price

change to switch from selling the partition {AB} to selling the partition {A,B}. [2] show that

a valuation is strong-substitutes if and only if it corresponds to a demand type defined by a

unimodular set of vectors. A set of vectors in n dimensions is unimodular if every linearly

independent subset of the set of vectors containing n vectors has determinant 0 or ±1. For
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this to hold, an single vector can have at most one non-zero entry of the same sign. A demand

type contains all the vectors describing the directions in which demand could change due to an

infinitesimal generic price change. The seller’s “demand” type characterisation would contain

the vectors ±(1, 1, 0,−1, 0, 0, 0). The entries of the vector correspond to the change in supply

of packages (A,B,C,AB,AC,BC,ABC) induced by an arbitrary, small price change, i.e. there

exists an arbitrary, small price change that could make the seller prefer selling the partition {AB}
to selling the partition {A,B}. Hence, the seller’s demand type does not satisfy unimodularity.

∅ A B C AB AC BC ABC

Bidder 1 0 10 8 2 13 11 9 14
Bidder 2 0 8 5 10 13 14 13 15
Bidder 3 0 1 1 8 2 9 9 10

Table 2: Bidders’ values over objects

C Examples and additional figures

C.1 Example for Section 3

Example 2. Consider the sale of two units of good A and two units of good B, which may

be sold separately or in packages. Only {AB} is considered a package; the multiset {A,A,B},
could only be bundled as {{AB}, {A}}, but not as {{AA}, {B}}.
Bidder values. Suppose there is one bidder, “bidder 1”, with the MU-concave superadditive

value function given by Table 3. Then, for k = (kA, kB, kAB), we have, e.g., V 1(1, 0, 0) = 3,

V 1(1, 0, 1) = 9 + 3, V 1(0, 1, 1) = 5 + 9, V 1(1, 1, 0) = 5 + 1, and V 1(1, 1, 1) = 5 + 9 + 0. Note that

the bidder cannot repackage objects A and B if he receives them separately, so if he receives

three distinct packages one of them is worthless to him. Consider now a different MU-concave

Table 3: Bidder 1’s marginal values

q v1(q, A) v1(q,B) v1(q, AB)

1 3 5 9
2 1 2 9

> 2 0 0 0

Table 4: Bidder 1’s marginal values

q v1(q, A) v1(q,B) v1(q, AB)

1 3 5 9
2 1 2 5

> 2 0 0 0

superadditive value function given in Table 4. In Table 3 we had V 1(0, 1, 1) = v1(1, B) +

v1(2, AB) = 5+9; in this example, we have V 1(0, 1, 1) = v1(1, AB)+v1(2, B) = 9+2. Of course

a convention could be introduced according to which V 1(0, 1, 1) = v1(1, B) + v1(2, AB) = 5 + 5

in this example also. However, it would be difficult to argue why to choose such convention

over another. The marginal value aggregation by Definition 5 seems least restrictive to us.

One may reasonably require, however, that bidders are capable of repackaging the objects they

receive, in accordance with Definition 6. Suppose this is the case; then, if the bidder was

given A and B in separate packages, we have V 1(1, 1, 0) = v1(1, B) + v1(2, A) = 5 + 1 and

Ṽ 1(1, 1, 0) = v1(1, AB) = 9.
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Seller’s cost. Suppose there is a seller with two units of A and two units of B available for sale.

Her preference is given first as her marginal cost function in Table 5. Note that k−S = (kB, kAB)

Table 5: Seller’s marginal cost

k−S c0(1, A, k−S) c0(2, A, k−S) c0(1, B, k−S) c0(2, B, k−S) c0(1, AB, k−S) c0(2, AB, k−S)

(0,0) 1 2 1 2 1 4
(1,0) 1 2 1 2 2 ∞
(0,1) 2 ∞ 2 ∞ 2 ∞
(1,1) 2 ∞ 2 ∞ 3 ∞
(0,2) ∞ ∞ ∞ ∞ ∞ ∞
(2,0) 1 2 1 2 ∞ ∞
(2,2) ∞ ∞ ∞ ∞ ∞ ∞
(1,2) ∞ ∞ ∞ ∞ ∞ ∞
(2,1) 2 ∞ 2 ∞ ∞ ∞

if S = A, k−S = (kA, kAB) if S = B, and k−S = (kA, kB) if S = AB. The overall cost

function is not straightforwardly defined; take for example C0(1, 1, 1). We could plausibly have

C0(1, 1, 1) = c0(1, A, (0, 0)) + c0(1, B, (1, 0)) + c0(1, AB, (1, 1)) = 1 + 1 + 3 , or C0(1, 1, 1) =

c0(1, AB, (0, 0)) + c0(1, B, (0, 1)) + c0(1, A, (1, 1)) = 1 + 2 + 2, or C0(1, 1, 1) = c0(1, A, (1, 1)) +

c0(1, B, (1, 1)) + c0(1, AB, (1, 1)) = 2 + 2 + 3, etc., depending on how one defines marginal costs

of different goods to interact with one another.

The representation of the seller’s preferences in terms of incremental costs and cost relations

has two advantages: first, it is much more compact, and second, it allows for a simple and

unambiguous aggregation of incremental costs to overall costs. The incremental cost represen-

tation of the same preference is given in Table 5 and the graph in Figure 2. Then, by Definition

13 above, the overall cost is given by, e.g., C0(2, 1, 0) = ∆c(1, A) + ∆c(2, A) + ∆c(1, B), and

C0(1, 1, 1) = ∆c(1, A) + ∆c(1, B) + ∆c(2, A) + ∆c(2, B) + ∆c(1, AB).

A B

AB q ∆c(q, A) ∆c(q,B) ∆c(q, AB)

1 1 1 -1

2 2 2 0

> 2 ∞ ∞ ∞

Figure 1: Cost function graph
Table 6: Incremental marginal cost

Value representation. Bidder 1’s preferences (Table 3) can be expressed simply by submitting

his two sets of marginal values in two XOR-bids, (vA, vB, vAB, κ) = (3, 5, 9, 1) and (1, 2, 9, 1).

These bids can be represented geometrically; e.g., (vA, vB, vAB, κ) = (3, 5, 9, 1) is shown in Fig. 6

in Appendix C.3.

Cost representation. The preference given in Table 6 and Example 2 can be directly submitted

to the auctioneer and serves as input in the auction algorithm. Note again the compactness of
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∆c(q, A)

q (quantity of bundles with cost relation to A)

1
2

∞
1

1

∞

Figure 2: Marginal cost function/supply function fA submitted by the seller

the bidding language compared to expressing marginal costs directly (Table 5). ∆c(q, S) is now

simply renamed into µqS . The incremental marginal cost function corresponding to package A

from Table 6 is given in Fig. 2. Solving the auctions. Bidder 1 submits the bids i = 1, 2, and

there are two additional bidders who submit bids 3 and 4, respectively. The seller submits the

supply schedule discussed above. Supply schedule and bids are listed as auction input in Table

7. The efficient allocation is underlined in the bid list. The seller has a cost saving if she sells

the first units of A and B as a package, hence bid 4 obtains {AB}. For the second units, the

seller is indifferent between selling separately or as a package, so bid 1 and 3 win. Prices have

to satisfy the set of equations corresponding to the constraints of DLP. One can verify that the

set of equilibrium prices is given by (zA, zB, zAB) ∈ {(4, 5, 9), (5, 4, 9), (5, 5, 9), (5, 5, 10)}, which

all support the unique equilibrium allocation. Note that a lowest equilibrium price vector does

not exist, but a highest equilibrium price vector does. Proposition 1 (ii) tells us, e.g., that

zAB = zA + zB + µ1AB + u1AB. Corollary 1 (i) tells us that µ1AB + u1AB ≤ µ2AB = 0. Thus,

equilibrium prices must satisfy either zA + zB = zAB or zA + zB = zAB − 1. The surplus

constraints pin down the set of equilibrium prices precisely.

Supply functions fA, fB, fAB List of XOR-bids submitted

q µqA µqB µqAB

1 1 1 -1
2 2 2 0

> 2 ∞ ∞ ∞

i viA viB viAB κi

1 3 5 9 1
2 1 2 9 1
3 5 3 8 1
4 6 2 11 1

Table 7: Auction input

C.2 Examples for Section 4

Example 3. In Table 8, c0 is a subadditive. Its dual v∗(c0, ·) is set-cover supermodular by

Lemma 5, but of course it is also subadditive. The strictly subadditive elements A, B, and AB

are untouched by the set-cover requirement.

In Table 9, v0 is superadditive. Its dual is set-cover submodular, and elements A, BC, and

ABC are strictly subadditive. However, it also exhibits strictly superadditive elements B,C,

and BC. Strictly superadditive and strictly subadditive elements of a cost function correspond
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to negative and positive synergies between objects that are sold together. Selling B costs the

seller 2, and selling C costs the seller 0. Selling {BC} or {B,C} (each object to a different

bidder) costs the seller 3. But adding A to the set of objects sold, i.e. selling any partition of

{A,B,C}, takes away the cost increment of 1 the seller incurred from selling B and C: Any

partition of {A,B,C} now costs merely 4. Hence, in this example both negative and positive

synergies are present.

Table 8: Set-cover supermodular and subadditive function

S A B C AB AC BC ABC

c0(S) 3 2 0 4 2 1 4
v∗(c0, S) 3 2 0 4 2 1 4

Table 9: Superadditive v0 and set-cover submodular c∗

S A B C AB AC BC ABC

v0(S) 1 2 0 4 2 2 4
c∗(v0, S) 2 2 0 4 2 3 4

Example 4. Table 10 states the bidders’ and the seller’s values for goods A, B, and the

package AB. Bidders are numbered from B1 to B6, the seller is denoted by S. The dual of

these values yields c0(A) = 4, c0(B) = 6, and c0(AB) = 8. Table 11 illustrates the basic

ascending auction from SY (the seller chooses a revenue-maximising supply set wrt. v0, or a

profit-maximising supply set wrt. C0(δ) = c0
(⋃

S∈δ S
)
, in each round). Table 12 illustrates

my procedure, i.e. the ascending auction where the seller chooses a profit-maximising supply set

wrt. C0(δ) =
∑

S∈δ c
0 (S) in each round. Both procedures terminate in the respective efficient

allocation defined in the corresponding environment: in SY’s model, the two individual objects

A and B are allocated, e.g. to B1 and B3; in my model, the bundle AB is allocated, e.g. to B5.

C.3 Additional figures

Different examples for cost/supply function graphs, referred to in the main text, are shown

in Figs. 3 to 5.

A B C

AB AC BC

ABC

Figure 3: Complete CFG with three different varieties A, B, C

Fig. 6 illustrates the package XOR-bid (vA, vB, vAB, κ) = (3, 5, 9, 1) geometrically. The black

dot at (3, 5, 9) corresponds to the bid. Beyond the light blue faces, the bid demands nothing
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A B

ABAA

Figure 4: SFG with package AA

A1 A2 B

A1A2 A1B A2B

A1A2B

Figure 5: Augmented SFG with three different varieties A1, A2, B

Figure 6: Combination XOR-bid for three packages

47



Table 10: Val-
ues and costs

A B AB

B1 5 0 5
B2 5 0 5
B3 0 7 7
B4 0 7 7
B5 0 0 11
B6 0 0 11

S (values) 2 4 8
S (costs) 4 6 8

Table 11: Revenue-maximising ascending auction

current price supply set
demand

squeezed-outB1 B2 B3 B4 B5 B6

p(0) = (2, 4, 8) {AB} A A B B AB AB
p(1) = (3, 5, 9) {AB} A A B B AB AB
p(2) = (4, 6, 10) {AB} A A B B AB AB
p(3) = (5, 7, 11) {A,B} ∅ ∅ ∅ ∅ ∅ ∅ A,B

Table 12: Profit-maximising ascending auction, cost = sum of in-
dividual package costs

current price supply set
demand

squeezed-outB1 B2 B3 B4 B5 B6

p(0) = (4, 6, 8) {AB} A A B B AB AB
p(1) = (5, 7, 9) {A,B} ∅ ∅ ∅ ∅ AB AB
p(2) = (5, 7, 10) {AB} ∅ ∅ ∅ ∅ AB AB
p(3) = (5, 7, 11) {AB} ∅ ∅ ∅ ∅ ∅ ∅ AB

because prices are too high. Consider now the area that is not beyond the light blue faces; it

is divided in three areas. For prices above the blue face and left of the red face bundle {A} is

demanded, for prices above the green face and right of the red face bundle {B} is demanded,

and for priced below the blue and the green face bundle {AB} is demanded. At prices that lie on

the red face, the bid is indifferent between receiving {A} or {B}, and similarly for prices on the

green or blue face. At prices that lie on the intersection of all three faces, the bid is indifferent

between all three bundles. At prices on any of the light blue faces, the bid is indifferent between

receiving nothing and the bundle from the neighbouring demand region. A detailed description

of the geometric representation of such preferences is given in [2].
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