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Abstract

Policymakers frequently use reserve categories to combine competing objectives in

allocating scarce resources based on priority. For example, schools may prioritize stu-

dents from underprivileged backgrounds for some of their seats while allocating the

rest of them based solely on academic merit. The order in which different categories

are processed has been shown to have an important, yet subtle impact on allocative

outcomes—and has led to unintended consequences in practice. I introduce a new, more

transparent way of processing reserves, which handles all categories simultaneously. I

provide an axiomatic characterization of my solution, showing that it satisfies basic

desiderata as well as category neutrality : if an agent qualifies for n categories, she takes

1/n units from each of them. A practical advantage of this approach is that the relative

importance of categories is entirely captured by their quotas.
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1 Introduction

If a good is in short supply, who should have access to it? The COVID-19 crisis has high-

lighted the importance of rationing rules—for example, to allocate ventilators or vaccine

doses—in situations where demand exceeds supply and it is not possible to use a price mech-

anism to equate them. The simplest approach is to use a priority order and allocate the good

to whomever has the highest priority. For example, medical practitioners have guidelines to

determine who should receive a treatment based, among other factors, on who is likely to ben-

efit from it the most. Likewise, many cities (e.g., New York and Boston) use a priority system

to allocate seats in public schools, based on a range of administrative rules.1 Reserve systems

constitute a more flexible approach, as they allow multiple priority orders, each of which ap-

plies to part of the capacity. For example, in an attempt to ensure classroom diversity, each

public school in Chicago reserves 70% of its seats for students from specific neighborhoods

(Dur, Pathak, and Sönmez, 2020). Since 2005, the US Customs and Immigration Service

has reserved 20,000 H-1B visas each year for applicants with an advanced degree, while the

remaining 65,000 are open to all applicants (Pathak, Rees-Jones, and Sönmez, 2020a). Such

a system allows those applicants who have an advanced degree to be favored without closing

the door to those who do not. Recently, Pathak, Sönmez, Ünver, and Yenmez (2020) have

proposed using a reserve system to allocate medical resources (e.g., ventilators, ICU beds,

drugs, and vaccines) to reconcile various ethical values. For example, there is a view in the

medical community that essential personnel, such as frontline healthcare workers, should be

given higher priority for medical resources, but doing so would risk denying goods to those

patients who need them most. Reserving some capacity for essential personnel and allocating

the rest based on need would allow both objectives to be reconciled.

In this paper, I propose a new solution for allocating a scarce resource through a reserve

system. I consider a standard rationing problem in which a certain number of units (e.g.,

ventilators, school places, or visas) have to be allocated to agents (e.g., patients, students,

or visa applicants) and the units are split into (reserve) categories (e.g., essential personnel,

neighborhood tiers, advanced degree holders, or an open category), each of which has its own

priority order over the agents. The novelty of my proposed solution is that the categories are

processed simultaneously rather than sequentially. In a sequential reserve system, categories

are processed one at a time following a precedence order. Each category allocates its quota

(the number of units reserved for that category) to its highest-priority agents who have not yet

received a unit. The precedence order impacts the allocation because an agent who qualifies

1See Pathak, Sönmez, Ünver, and Yenmez (2020) and Pathak (2011) for a comprehensive overview of
triage and school choice practices, respectively, in the United States.
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for multiple categories counts toward the quota of whichever category is processed first; thus,

the other categories for which that agent qualifies have an additional unit to allocate to

their next highest-priority agent. For that reason, all else equal, categories processed later

tend to matter more. In contrast, the simultaneous reserve system I propose treats categories

symmetrically and does not rely on any precedence order. Categories simultaneously allocate

units to their highest-priority agents until their quotas are filled. If an agent is allocated a

unit from, say, n categories, she only takes 1/n units of capacity from each, allowing these

categories to allocate more capacity to agents further down their respective priority orders.

The effect of changing the precedence order on the allocation is not negligible; in fact, it

can be of similar magnitude to the size of the quotas (Dur, Kominers, Pathak, and Sönmez,

2018). However, the role played by the precedence order in determining the outcome is coun-

terintuitive and often misunderstood by policymakers and participants. In an experimental

study, Pathak, Rees-Jones, and Sönmez (2020b) find that a large proportion of subjects re-

acted optimally to a change in quotas but ignored the impact of the precedence order in

which categories are processed. Such mistakes are also well documented in the field. As

Dur, Kominers, Pathak, and Sönmez (2018) report, the City of Boston established in 1999

a 50-50 seat split for its public schools: half of each school’s seats were reserved for students

living within walking distance, while the other half were open to all students. The policy

was seen as a compromise between a neighborhood school and a school choice system. How-

ever, in practice, the “walk zone” reserve had almost no impact because it was processed

first. Pathak, Rees-Jones, and Sönmez (2020a) document a similar story for the H-1B visa

program. Procedure changes made for logistical reasons in 2005 and 2009 had unintended

consequences due to the precedence order of the “advanced degree” and “all applicants” cat-

egories. Even if policymakers are made aware of the issue, finding the right combination of

quotas and precedence order to achieve a given distributional goal and ensuring that market

participants understand how the system works remain challenging tasks (Pathak, Rees-Jones,

and Sönmez, 2020b, pp.4-5). In fact, once Boston Public Schools was informed of the rea-

son the reserve system was not producing the intended outcome, it abandoned the system

altogether, in large part due to concerns over the lack of transparency associated with the

precedence order (Dur, Kominers, Pathak, and Sönmez, 2018). As the solution presented

in this paper does not rely on a precedence order, the relative importance of categories is

entirely determined by the quotas. Thus, the system is easier to design for policymakers and

more transparent for market participants.
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Theoretical Contribution

I introduce the simultaneous reserve (SR) algorithm (Algorithm 1). In each round, categories

allocate their quotas to their respective highest-priority agents. If an agent is allocated more

than one unit in aggregate (over all categories), then the amount that she receives from

each category is reduced until she is allocated exactly one unit in aggregate. As a result,

some categories have additional capacity, which they can allocate in the next round to agents

further down their respective priority orders. Once no category has any additional capacity

to allocate, the algorithm has found an allocation. While the SR algorithm may run for

infinitely many rounds without finding an allocation, I show that it always converges to one

(Theorem 1). I call the allocation to which the SR algorithm converges the simultaneous

reserve (SR) allocation. The SR allocation is well defined and specifies how much capacity

each category allocates to each agent. In contrast to most of the literature, these numbers do

not have to be binary, so an agent can be allocated one unit in aggregate but receive parts

of that unit from different categories.

I analyze the properties of the SR allocation. I show that it satisfies three standard ax-

ioms introduced by Pathak, Sönmez, Ünver, and Yenmez (2020)—compliance with eligibility

requirements, nonwastefulness, and respect of priorities—as well as a fourth one that I call

category neutrality (Theorem 2). An allocation is category neutral if every agent who qual-

ifies for multiple categories receives the same amount of capacity from all of them. I show

that the SR allocation may not be the only allocation to satisfy all four axioms; however,

any other allocation that does generates the same aggregate allocation. That is, at any two

allocations that satisfy the four axioms, every agent is allocated the same amount of capac-

ity in aggregate (Theorem 3). Therefore, differences among allocations that satisfy all four

axioms amount to a matter of accounting and do not have any tangible impact for agents.

Among the allocations that satisfy all four axioms, I characterize the SR allocation as the

one in which the maximum capacity that each agent is allocated from a single category is

largest (Theorem 4).

The fact that the SR algorithm may run for infinitely many rounds constitutes a clear

impediment to practical application. Following a similar approach to that of Kesten and

Ünver (2015), I remedy the situation by using linear programming. The resulting simultane-

ous reserve with linear programming (SRLP) algorithm produces the SR allocation in finitely

many rounds and polynomial time (Theorem 5).

4



Related Literature

This paper builds upon a rich literature on allocation problems with distributional con-

straints. In the school choice setting of Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu

(2005) proposes a solution to incorporate affirmative action through maximum quotas on

specific types of students, and Kojima (2012) shows that maximum quotas on majority stu-

dents can have unintended adverse consequences for the minority students that the policy

aims to favor. Hafalir, Yenmez, and Yildirim (2013) propose using minimum quotas instead,

which they show provide better outcomes on average for minority students. Their solution

can be thought of as a reserve system with two categories: a “minority” category that ranks

minority students first and an “open” category that ranks students based on the usual prior-

ities, with the minority category processed first. Westkamp (2013) develops a solution based

on minimum quotas for the German university admission system. Ehlers, Hafalir, Yenmez,

and Yildirim (2014) and Echenique and Yenmez (2015) extend the approach to include mul-

tiple “minorities”. As each student belongs to at most one minority, the precedence order

of minority categories does not impact the outcome; however, the minimum quota approach

implies that the “open” category must be processed last. Gonczarowski, Kovalio, Nisan,

and Romm (2019) use a combination of minimum and maximum quotas in their design of a

centralized matching market for Israeli gap-year programs.

Kominers and Sönmez (2016) formally introduce a reserve system with sequential pro-

cessing. Their setting generalizes those of Kojima (2012) and Hafalir, Yenmez, and Yildirim

(2013), as it allows for any priorities and precedence order. Dur, Kominers, Pathak, and

Sönmez (2018) identify the importance of the precedence order and show that it explains

why the walk zone reserve in Boston’s public schools had almost no impact, a finding that

led to the elimination of that system. Pathak, Rees-Jones, and Sönmez (2020a) document

how seemingly innocuous changes to the H-1B visa program in the United States had im-

portant consequences because of sequential processing. Sequential reserve systems have been

studied in various contexts, including Chicago’s public schools (Dur, Pathak, and Sönmez,

2020) as well as university admissions in India (Sönmez and Yenmez, 2019a,b; Aygün and

Turhan, 2020a,b) and Brazil (Aygün and Bó, 2020). Pathak, Sönmez, Ünver, and Yenmez

(2020) propose using such a system for the allocation of medical resources. Pathak, Rees-

Jones, and Sönmez (2020b) experimentally study the decision-making of subjects who must

optimize over combinations of reserve quotas and precedence orders and show that very few

participants do so optimally. The present paper departs from the literature on sequential

reserve systems by proposing a simultaneous reserve system that does not rely on any prece-

dence order and treats all categories identically.
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Two approaches that do not rely on a sequential reserve system have recently been pro-

posed. Yılmaz (2020) develops a solution concept independent of any precedence order that

satisfies basic axioms and is as egalitarian as possible in terms of the share (between zero and

one) that each agent is allocated in aggregate. The SR allocation satisfies Yılmaz’s (2020)

axioms but pursues a different goal of treating categories identically. In fact, most agents

(all but at most as many agents as there are categories) are allocated either zero units or

one unit (Proposition 5). The most closely related approach to that of the current paper

is the horizontal envelope algorithm of Sönmez and Yenmez (2020), which Pathak, Sönmez,

Ünver, and Yenmez (2020) generalize to develop the smart reserves algorithm. I discuss the

differences and complementarity between this approach and my own in Section 4.5.

From a methodological point of view, the present paper also relates to the literature

on random and probabilistic serial assignment, initiated by Hylland and Zeckhauser (1979)

and Bogomolnaia and Moulin (2001) and generalized by Budish, Che, Kojima, and Milgrom

(2013). The SR allocation resembles a random assignment in the sense that each category

allocates to each agent a capacity between zero and one. However, agents do not “eat”

categories in hopes of being assigned one of them. Rather, categories allocate capacity to

agents based on their priority orders, and when an agent is allocated one unit in aggregate,

that unit may be shared among different categories. Kesten and Ünver (2015) consider a

school choice model with priority ties. As a result, a school may assign to a student an

amount of capacity strictly between zero and one, and a student may be allocated parts

of a seat by different schools. Students have preferences over schools and must ultimately

be assigned to one of them; in contrast, in this paper, agents do not have preferences over

categories and can be allocated parts of a unit from different categories.

The remainder of the paper is organized as follows. Section 2 presents a motivating

example. Section 3 introduces the setup and the four axioms. Section 4 develops the SR

algorithm and analyzes the properties of the SR allocation. Section 5 presents the SRLP

algorithm and shows that it produces the SR allocation in polynomial time. Section 6

concludes, and all proofs are in the appendix.

2 Motivating Example

I present a simple example to illustrate how, in contrast to sequential processing, simultaneous

processing ensures that all categories matter equally.2 A school has four seats, two of which

2The example is inspired by the system in place for Boston’s public schools until 2013, and for concreteness,
I use the terminology of that application (see Dur, Kominers, Pathak, and Sönmez (2018) for a study of that
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Walk (2) Open (2)

Amy 1 Amy
Bob 1 Bob
Eric Claire 1

Fiona Dan 1
Claire Eric
Dan Fiona

(a) Walk category processed first.

Walk (2) Open (2)

Amy Amy 1
Bob Bob 1
Eric 1 Claire

Fiona 1 Dan
Claire Eric
Dan Fiona

(b) Open category processed first.

Table 1: Sequential processing in the motivating example.

Walk (2) Open (2)

Amy 1/2 Amy 1/2
Bob 1/2 Bob 1/2
Eric 1 Claire 1

Fiona Dan
Claire Eric
Dan Fiona

Table 2: Simultaneous processing in the motivating example.

are reserved for students living within walking distance of the school, while the other two are

open to all students. There are six students (Amy, Bob, Claire, Dan, Eric, and Fiona), and

four of them (Amy, Bob, Eric, and Fiona) live within walking distance of the school. There

is general priority order over the students, which I assume to be alphabetical. The “walk”

category gives higher priority to students who live within walking distance of the school and

then ranks students based on the general priority order. The “open” category ranks students

according to their general priority. Thus, the priority order for the walk category is Amy,

Bob, Eric, Fiona, Claire, and Dan, and the priority order for the open category is Amy, Bob,

Claire, Dan, Eric, and Fiona.

Consider sequential processing, and suppose that the walk category is processed first.

That category allocates its seats to its two highest-priority students, Amy and Bob. We then

move to the open category, whose highest-priority students (Amy and Bob) have already been

allocated a seat. Hence, the open category allocates its two seats to its next highest-priority

students, Claire and Dan. Table 1a summarizes the outcome. The four students with the

highest general priority—Amy, Bob, Claire, and Dan—are allocated a seat; hence, the same

outcome would have been achieved without a reserve.3 Suppose now that the open category

specific problem); however, the same example could be framed in different contexts, such as a hospital
allocating ventilators to patients and reserving some of them for essential personnel.

3This example illustrates why the walk zone reserve in Boston had very little effect on the outcome as a

7



is processed first. That category allocates its two seats to Amy and Bob, its highest-priority

students. As Amy and Bob have already been allocated a seat, the walk category allocates

its two seats to Eric and Fiona. Table 1b summarizes the outcome. The students who live

within walking distance of the school—Amy, Bob, Eric, and Fiona—are all allocated a seat;

hence, the same outcome would have been achieved by reserving all four seats.

The precedence order has a large impact in this example, as it determines the allocation

of half of the seats. Moreover, both outcomes are extreme in the sense that they each follow

the priority of one category and ignore the other category. In contrast, as I next show,

simultaneous processing yields an intermediate solution that accounts for both categories.

The two categories simultaneously allocate their two seats to their highest-priority students.

Hence, Amy and Bob each receive two seats, one from each category. As each student only

requires one seat, Amy and Bob only keep half a seat from each category. Of course, seats

are indivisible, and Amy and Bob each receive one; however, for accounting purposes, the

seats they receive are split between the two categories. Each category has a quota of two and

allocates one seat overall (1/2 to Amy and 1/2 to Bob); therefore, they each have one seat

left for their respective third-priority students. The walk category allocates its second seat

to Eric, and the open category allocates its second seat to Claire. The resulting allocation is

displayed in Table 2. Amy, Bob, Claire, and Eric are allocated a seat. Both categories are

equally important in the outcome: Amy and Bob are allocated a seat because they qualify

for both categories, Claire is allocated a seat through the open category, and Eric is allocated

a seat through the walk category.

3 Preliminaries

3.1 Setup

There are a set of agents A with typical element a, a set of (reserve) categories C with

typical element c, and q ∈ Z>0 identical and indivisible units. Each category c has a quota

qc ∈ R≥0 with
∑

c∈C qc = q as well as a linear priority order πc over the set of agents and

an eligibility threshold ∅. Agent a is eligible for category c if aπc∅. For every agent a and

every category c, I denote by Âa,c = {a′ ∈ A : a′πca} the set of agents who have a higher

priority than a for c and by Ǎa,c = {a′ ∈ A : aπca
′} the set of agents who have a lower priority

than a for c. A rationing problem is a tuple R = (A,C, (πc)c∈C , (qc)c∈C) specifying a set

of agents, a set of categories, and, for each category, a priority order and quota. I say that

the rationing problem R has soft reserves if every agent is eligible for every category, i.e.,

result of being processed before the open category (see Dur, Kominers, Pathak, and Sönmez, 2018).
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if aπc∅ for every a ∈ A and every c ∈ C; otherwise, I say that R has hard reserves.

A (random) allocation is an |A| × |C| matrix ξ = (ξa,c)a∈A,c∈C such that for every

agent a and every category c, (i) ξa,c ∈ [0, 1], (ii)
∑

a′∈A ξa′,c ≤ qc, and (iii)
∑

c′∈C ξa,c′ ≤ 1.

In words, each element ξa,c specifies the amount of capacity (between zero and one) that

category c allocates to agent a; each category allocates a total amount of capacity no larger

than its quota; and each agent is allocated at most one unit in aggregate. For every agent a, I

denote by ξa =
∑

c∈C ξa,c the aggregate amount of capacity allocated to a at the allocation ξ.

A (random) aggregate allocation is a vector ρ = (ρa)a∈A such that ρa ∈ [0, 1] for every

agent a and
∑

a∈A ρa ≤ q. In words, each element specifies the amount of capacity allocated

to agent a in aggregate.4 I denote by ρ(ξ) = (ξa)a∈A the aggregate allocation generated by

the allocation ξ.

3.2 Reserve Systems in Practice

I consider three main applications: the allocation of medical resources, school seats, and

immigration visas.

In the health care rationing problem of Pathak, Sönmez, Ünver, and Yenmez (2020), each

unit is a unit of a medical resource, for example, a ventilator or a dose of a vaccine, while

each agent is a patient who requires that medical resource. There is a general category in

which patients are prioritized based on their medical situation (typically, expected health

outcome and survival probability). Pathak, Sönmez, Ünver, and Yenmez (2020) also propose

three possible categories, each of which would prioritize a group of patients. An essential

personnel category would prioritize those patients whose activity is essential during a health

emergency, for example, frontline healthcare workers. A disadvantaged category would pri-

oritize patients in groups that are particularly affected by the crisis, and a Good Samaritan

reciprocity category would prioritize agents whose selfless acts—for example, donating a kid-

ney to a stranger, donating a large amount of blood, or participating in clinical trials—have

saved lives in the past. In each of those categories, patients would first be ranked based first

on whether they are part of the target group and then their medical situation.5 Last, Pathak,

Sönmez, Ünver, and Yenmez (2020) argue that prioritizing patients based on their medical

situation may be discriminatory to certain groups, who might not have access to the medical

resource at all. The authors propose creating a disabled category that does not take the

general medical situation into account but rather prioritizes patients who have a disability

4Ultimately, each agent must be allocated either zero units or one unit. In Section 4.4, I consider solutions
for the case in which some agents are allocated an amount of capacity strictly between zero and one.

5For the Good Samaritan reciprocity category, one could instead consider ranking patients based on the
size of their past contribution.
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and breaks ties with a lottery. For the purpose of allocating COVID-19 vaccines, Persad,

Peek, and Emanuel (2020) propose reserving half of the doses for frontline healthcare workers

and a quarter for people working or living in high-risk settings and leaving the remaining

quarter unreserved. It is natural to think of a health care rationing problem as one with soft

reserves because it is typically better to allocate a unit to a low-priority patient than not at

all.

The allocation of seats in a public school constitutes another application: each unit is a

seat at a given public school, and each agent is a student. Until 2013, Boston had a reserve

system with two categories, each of which had a quota of half the total number of seats

(Dur, Kominers, Pathak, and Sönmez, 2018). The open category prioritized students who

had a sibling attending the school and then broke ties with a lottery, while the walk zone

category prioritized students who lived within walking distance of the school and broke ties

with the open category priority. In Chicago (Dur, Pathak, and Sönmez, 2020), the city’s

neighborhoods are split into four tiers based on socioeconomic factors. There is an open

category that prioritizes students based on academic merit and four tier-specific categories

(one per tier), which prioritize students who live in one of the tier’s neighborhoods. The open

category quota is equal to 30% of the school’s seats, and each of the tier-specific categories has

a quota of 17.5% of the seats. This application constitutes another example of a rationing

problem with soft reserves: all seats are allocated as long as there are at least as many

students as there are seats.

Pathak, Rees-Jones, and Sönmez (2020a) study a reserve system for the allocation of

H-1B visas in the United States. Each unit is an H-1B visa, each agent is an applicant, and

there are two categories: an open category with a quota of 65, 000 visas and an advanced

degree category with a quota of 20, 000 visas. There are two separate lotteries, each of which

determines the priority order of one of the categories. Only applicants with an advanced

degree are eligible for the advanced degree category; therefore, the allocation of H-1B visas is

an example of a rationing problem with hard reserves: even if the advanced degree category

allocates fewer than 20, 000 visas, the remaining ones cannot be allocated to applicants who

do not have an advanced degree.

Finally, a practically relevant aspect of the model is worth mentioning. While the total

number of units is an integer, there is no such restriction on the category quotas. To the best

of my knowledge, this paper is the first to provide that feature in the context of reserves.

The additional flexibility may prove useful in practice, particularly when the number of units

is small; for instance, if the policy is to allocate 30% of ventilators to essential personnel and

70% to the general population, a hospital with 5 ventilators can set the quotas to 1.5 and 3.5.
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3.3 Desirable Properties of an Allocation

Pathak, Sönmez, Ünver, and Yenmez (2020) introduce three axioms that an allocation should

satisfy: compliance with eligibility requirements, nonwastefulness, and respect of priorities.

An important difference between my setting and that of Pathak, Sönmez, Ünver, and Yenmez

(2020) is that they consider allocations (or matchings in their terminology) in which each

element is either zero units or one; that is, each agent is either not allocated anything or is

allocated one unit from one category. I generalize the three properties of Pathak, Sönmez,

Ünver, and Yenmez (2020) to my setting and introduce a fourth one—category neutrality—

that lies at the heart of the solution I propose.

Axiom 1. An allocation ξ complies with eligibility requirements if for every agent a

and every category c such that a is not eligible for c, ξa,c = 0.

The first axiom requires that agents be allocated capacity only by categories for which

they are eligible. In a rationing problem with soft reserves (e.g., medical resource rationing

or school seat allocation), every allocation trivially complies with eligibility requirements;

however, Axiom 1 matters in the presence of hard reserves. For instance, in the H-1B visa

program, Axiom 1 precludes applicants who do not have an advanced degree from being

allocated one of the 20, 000 visas reserved for advanced degree applicants.

Axiom 2. An allocation ξ is nonwasteful if for every category c such that
∑

a′∈A ξa′,c < qc

and every agent a such that ξa < 1, a is not eligible for c.

The second axiom states that whenever a category has not allocated its full quota, then

none of the remaining capacity can benefit an agent who is eligible for that category, as

that capacity would then be wasted. In a rationing problem with soft reserves, Axiom 2

requires that either all agents be allocated a unit or all units be allocated, that is,
∑

a∈A ξa =

min{|A|, q}. With hard reserves, some categories may allocate an amount of capacity smaller

than their quotas as long as every eligible agent is allocated one unit in aggregate.

Axiom 3. An allocation ξ respects priorities if for every agent a such that ξa < 1, every

category c and every lower-priority agent a′ ∈ Ǎa,c, ξa′,c = 0.

The third axiom ensures that each category allocates its capacity based on priority; that

is, an agent can be allocated capacity from a category only if all higher-priority agents have

been allocated one unit in aggregate.

As Pathak, Sönmez, Ünver, and Yenmez (2020, p.13) note, Axioms 1-3 are widely accepted

as properties that an allocation should possess.
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“As far as we know, in every real-life application of a reserve system each of these

three axioms are either explicitly or implicitly required. Hence, we see these three

axioms as a minimal requirement for reserve systems.”

While Axioms 1-3 narrow down the set of allocations to be considered, they leave many

possible candidates. In particular, these axioms are silent on a key question: if an agent

qualifies for multiple categories, from which one(s) should she receive a unit? The most

common solution both in practice and in the literature is to use a sequential reserve algorithm

in which categories are processed one at a time and allocate, until their quotas are filled, one

unit of capacity to the highest-priority eligible agents who have not yet been allocated a

unit.6 The implication is that if an agent qualifies for multiple categories, she receives a unit

from whichever is processed first; hence, categories processed early tend to allocate units to

agents who also qualify for other categories. At the heart of my proposed solution is the idea

that while units are ultimately indivisible, how much capacity categories allocate to agents

is merely an accounting exercise; therefore, an agent allocated one unit overall can receive

parts of that unit from multiple categories. The fourth axiom, which is newly introduced in

this paper, stipulates that the unit an agent is allocated should be shared equally among the

categories for which she qualifies.

Axiom 4. An allocation ξ is category neutral if for every agent a and every category c

such that a is eligible for c and ξa,c < maxc′∈C{ξa,c′}, ξa,c +
∑

a′∈Âa,c
ξa′,c = qc.

Axiom 4 ensures that each agent receives the same amount of capacity from every category

with available capacity. In the motivating example, the category neutrality condition dictates

that Amy and Bob be allocated half a unit from each of the two categories. However, it does

not prevent Claire from being allocated one unit of capacity from the open category and none

from the walk category because all of the walk category’s quota is allocated to higher-priority

agents. From a normative perspective, the category neutrality condition is needed to ensure

that all categories are treated the same so that their relative importance only depends on

their quotas.

In the next section, I show that processing all categories simultaneously yields an allo-

cation that satisfies Axioms 1-4 and that any other allocation satisfying those properties

generates the same aggregate allocation.

6See Pathak, Sönmez, Ünver, and Yenmez (2020, p.17) for a full description of that procedure.
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Algorithm 1: Simultaneous Reserve (SR)

Initialization Set every agent’s demand to one: d0a = 1 for every agent a.

Round i ≥ 1:

Capacity Allocation For every agent a and every category c, if a is eligible for c, then
set xia,c = min{di−1a ,max{qc −

∑
a′∈Âa,c

di−1a′ , 0}}, and otherwise set xia,c = 0.

Demand Adjustment For every agent a such that xia < 1, set dia = 1. For every agent a
such that xia = 1, set dia = maxc∈C{xia,c}. For every agent a such that xia > 1, set dia such
that

∑
c∈C min{dia, xia,c} = 1.

4 Simultaneous Reserve (SR) Allocation

4.1 Simultaneous Reserve (SR) Algorithm

The simultaneous reserve (SR) algorithm is formally defined in Algorithm 1. To describe

the algorithm and analyze its properties, it is useful to define the concept of a preallocation,

which is identical to an allocation but allows agents to be allocated more than one unit overall.

Formally, a preallocation is an |A| × |C| matrix x = (xa,c)a∈A,c∈C such that for every agent a

and every category c, (i) xa,c ∈ [0, 1] and (ii)
∑

a′∈A xa′,c ≤ qc. I denote by xa =
∑

c∈C xa,c

the aggregate amount of capacity allocated to agent a at the preallocation x. Axioms 1-4 are

defined analogously over preallocations.

At the start of the SR algorithm, each agent has a demand of 1. This can be interpreted

as the largest amount that an agent could require from any category; as every agent requires

one unit overall, demand starts at 1 but may fall throughout the algorithm as agents are

allocated capacity.

The first round starts with the capacity allocation stage: each category allocates one unit

of capacity to one agent at a time in decreasing order of priority until it has less than one

unit of capacity left or has allocated a unit to every eligible agent, whichever comes first.

The next agent receives the remaining capacity (which could be 0 or any number smaller

than 1), and the remaining agents are not allocated any capacity.

The capacity allocation stage generates a preallocation x1, where for any agent-category

pair (a, c), x1a,c is the amount of capacity that c has allocated to a. An agent may be allocated

more than one unit overall, so x1 is a preallocation but not necessarily an allocation. The

demand adjustment stage reduces the amount of capacity that agents demand to turn x1

into an allocation. The demand adjustment stage does not affect agents who have not yet
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been allocated a unit in aggregate (i.e., a such that x1a < 1); these agents continue to demand

one unit. The demand of an agent who has been allocated exactly one unit in aggregate

(i.e., a such that x1a = 1) falls to the maximum capacity she is allocated from any category

(i.e., maxc∈C{x1a,c}). The rationale is that she does not require more from any category to

be allocated one unit in aggregate so any additional capacity for which she qualifies can be

allocated to the next agent on the priority order. The demand of an agent who has been

allocated more than one unit in aggregate (i.e., a such that x1a > 1) falls even further so that

she abandons any capacity she does not require and is only allocated one unit in aggregate

(as
∑

c∈C min{d1a, x1a,c} = 1).

Every subsequent Round i starts with a demand vector di−1 and in the capacity allocation

stage, a preallocation xi is calculated. The highest-priority agents are allocated their demand

until there is not enough capacity for the next agent. That agent receives whatever capacity

remains, and lower-priority agents are not allocated any capacity. For any agent a, the

expression qc −
∑

a′∈Âa,c
di−1a′ represents the amount of capacity remaining once all higher-

priority agents have been allocated their demand. If this amount is weakly negative, then

there is no capacity left for agent a so she is not allocated any capacity. If it is equal to or

larger than di−1a , then agent a is allocated her demand. If it is anything in between, then

agent a is allocated that remaining capacity. In the demand adjustment stage, di is calculated

from xi, and the algorithm continues in Round i+ 1, in which xi+1 and di+1 are calculated.

I next illustrate how the SR algorithm can generate an allocation.

Example 1. There are five agents and four categories, each with a quota of 1. Every agent

is eligible for every category, and the priorities are

πc1 : a1, a2, a3, . . . πc2 : a1, a2, a4, . . . πc3 : a1, a3, . . . πc4 : a4, a5, . . . .

The preallocation calculated in each of the first four rounds of the SR algorithm is dis-

played in Table 3. In Round 1, each category allocates one unit of capacity to its highest-

priority agent. As agent a1 is allocated a unit from three different categories, her demand

drops to 1/3. In Round 2, categories c1, c2, and c3 only allocate 1/3 to a1, which leaves 2/3 to

allocate to their second highest-priority agents. As a result, a2 is allocated 4/3 in aggregate

(2/3 from each of c1 and c2), so her demand drops to 1/2. In Round 3, c1 and c2 allocate 1/3

to a1 and 1/2 to a2; hence, they have 1/6 left to allocate to their third highest-priority agents

a3 and a4, respectively. Agent a4 is now allocated 7/6 in aggregate (1/6 from c2 and 1 from

c4), so her demand drops to 5/6. In Round 4, c4 only needs to allocate 5/6 to a4 and can

therefore allocate 1/6 to its second highest-priority agent a5. Every agent is now allocated at

most one unit, so the Round 4 preallocation x4 is in fact an allocation. It is easy to see that
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Round 1 Round 2
c1 (1) c2 (1) c3 (1) c4 (1) c1 (1) c2 (1) c3 (1) c4 (1)

a1 1 a1 1 a1 1 a4 1 a1 1/3 a1 1/3 a1 1/3 a4 1

a2 0 a2 0 a3 0 a5 0 a2 2/3 a2 2/3 a3 2/3 a5 0

a3 0 a4 0 a3 0 a4 0

Round 3 Round 4
c1 (1) c2 (1) c3 (1) c4 (1) c1 (1) c2 (1) c3 (1) c4 (1)

a1 1/3 a1 1/3 a1 1/3 a4 1 a1 1/3 a1 1/3 a1 1/3 a4 5/6

a2 1/2 a2 1/2 a3 2/3 a5 0 a2 1/2 a2 1/2 a3 2/3 a5 1/6

a3 1/6 a4 1/6 a3 1/6 a4 1/6

Table 3: SR algorithm applied to Example 1.

in any subsequent round, the SR algorithm continues to produce the same (pre)allocation

and demand vector. Hence, in Example 1, the SR algorithm produces the allocation

x4 =



c1 c2 c3 c4

a1 1/3 1/3 1/3 0

a2 1/2 1/2 0 0

a3 1/6 0 2/3 0

a4 0 1/6 0 5/6

a5 0 0 0 1/6

,

which generates the aggregate allocation

ρ(x4) =
( a1 a3 a3 a4 a5

1 1 5/6 1 1/6
)
.

It is easy to verify that the allocation x4 satisfies Axioms 1-4. At first sight, it might look as

if x4 is not category neutral because a4 is allocated 1/6 from c2 and 5/6 from c4. However,

this does not violate Axiom 4, as c2 can only allocate 1/6 to a4 after having allocated 1/3 to

a1 and 1/2 to a2; formally, x4a4,c2 +
∑

a∈Âa4,c2
x4a,c2 = 1/6 + 1/3 + 1/2 = 1 = qc2 . The fact that

the SR algorithm produces an allocation that satisfies Axioms 1-4 is not a coincidence. In

the next two subsections, I formally define the outcome of the SR algorithm and show that

it is an allocation satisfying Axioms 1-4.

15



4.2 Outcome of the SR Algorithm

In Example 1, the SR algorithm finds an allocation after four rounds. In general, the SR

algorithm may never reach that point; however, its outcome is nevertheless well defined.7

Theorem 1. The SR algorithm converges to an allocation ξSR = limi→∞ x
i.

I call ξSR the simultaneous reserve (SR) allocation and discuss its properties in

Section 4.3. The remainder of this subsection is devoted to proving and providing the intuition

for Theorem 1. In Example 1, the SR algorithm finds an allocation after four rounds and

continues to return the same allocation and demand vector in every subsequent round. As

the next result shows, this always occurs once the SR algorithm has found an allocation.

Proposition 1. Suppose that in some Round i of the SR algorithm, xi is an allocation.

Then, for every j > i, xj = xi and dj = di.

The intuition for Proposition 1 is as follows. If xi is an allocation, then no agent is

allocated more than one unit, so the demand of every agent is at least what she is allocated

from any category, and so, in the next round, every category continues to allocate the same

capacity to every agent, i.e., xi+1 = xi. In each round, the demand vector depends on the

current round’s preallocation, and the preallocation depends on the previous round’s demand

vector; hence, the SR algorithm continues to return the same (pre)allocation and demand

vector in every subsequent round.

Proposition 1 implies that the SR algorithm can stop once it finds an allocation, as that

allocation is ξSR. Unfortunately, the SR algorithm may never reach an allocation.

Example 2. There are four agents and three categories. The priorities and quotas are

πc1 : a1, a2, a3, a4, ∅ πc2 : a3, a2, a1, a4, ∅ πc3 : a1, a3, a2, a4, ∅ qc1 = 1 qc2 = 1 qc3 = 2.

The working of the SR algorithm is displayed in Table 4. In Round 1, c1 and c2 each

allocate one unit to their highest-priority agent, a1 and a3, respectively. Category c3 has

two units and allocates them to its two highest-priority agents, a1 and a3. Agents a1 and

a3 are each allocated a unit from two different categories; hence, the demand of both agents

drops to 1/2. In Round 2, c1 and c2 each have an extra half-unit to allocate, which goes

to their second highest-priority agent, a2, while c3 has an extra unit to allocate to its third

highest-priority agent, who is also a2. As a result, a2’s demand drops to 1/3. In Round 3, c1

allocates 1/6 to a3, c2 allocates 1/6 to a1, and c3 allocates 2/3 to a4.

7In Section 5, I propose an outcome-equivalent algorithm that works in polynomial time and finds an
allocation after fewer than 4|A||C| rounds.
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Round 1 Round 2
c1 (1) c2 (1) c3 (2) c1 (1) c2 (1) c3 (2)

a1 1 a3 1 a1 1 a1 1/2 a3 1/2 a1 1/2

a2 0 a2 0 a3 1 a2 1/2 a2 1/2 a3 1/2

a3 0 a1 0 a2 0 a3 0 a1 0 a2 1

a4 0 a4 0 a4 0 a4 0 a4 0 a4 0

Round 3 Round 4
c1 (1) c2 (1) c3 (2) c1 (1) c2 (1) c3 (2)

a1 1/2 a3 1/2 a1 1/2 a1 5/12 a3 5/12 a1 5/12

a2 1/3 a2 1/3 a3 1/2 a2 1/3 a2 1/3 a3 5/12

a3 1/6 a1 1/6 a2 1/3 a3 3/12 a1 3/12 a2 1/3

a4 0 a4 0 a4 2/3 a4 0 a4 0 a4 5/6

Round 4 Round 5 Round 6 Round 7 · · · Round i ≥ 3
xia3,c1 3/12 7/24 15/48 31/96 · · · (2i−2 − 1)/(3 · 2i−2)
xia1,c2 3/12 7/24 15/48 31/96 · · · (2i−2 − 1)/(3 · 2i−2)
xia4,c3 5/6 11/12 23/24 47/48 · · · (3 · 2i−3 − 1)/(3 · 2i−3)
dia1 9/24 17/48 33/96 65/192 · · · (2i−1 + 1)/(3 · 2i−1)
dia3 9/24 17/48 33/96 65/192 · · · (2i−1 + 1)/(3 · 2i−1)

Table 4: SR algorithm applied to Example 2.

At this point, the SR algorithm begins to cycle. Agent a1 is allocated 7/6 in aggregate

(i.e., x3a1 = 7/6), so her demand drops in Round 3. However, she can only be allocated 1/6

from c2, meaning that she needs to be allocated 5/12 from each of c1 and c3. It follows that

a1’s demand drops to 5/12. Analogously, a3 is allocated 7/6 in aggregate, and her demand

drops to 5/12. In Round 4, as a result of the drop in a1’s and a3’s demand (by 1/12 each),

c1 allocates an extra 1/12 to a3, c2 allocates an extra 1/12 to a1, and c3 allocates an extra

1/6 to a4. The extra 1/6 of capacity that a1 releases benefits a4 (in c3) by half and a3 (in

c1) by half, while the extra 1/6 of capacity that a3 releases benefits a4 (in c3) by half and a1

(in c2) by half. As a result, a1 and a3 are each allocated 13/12 in aggregate in Round 4, so

their demand drops to 9/24. In Round 5, as in Round 4, half of the capacity released by a1

and a3 goes to a4 (c3 allocates an extra 1/12 to a4), and the other half comes back to a1 and

a3 (c1 allocates an extra 1/24 to a3 and c2 allocates an extra 1/24 to a1). The SR algorithm

continues to cycle forever, with the amount of reallocated capacity halving in each round.
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However, even though the SR algorithm never reaches an allocation, it converges to one:

ξSR =



c1 c2 c3

a1 1/3 1/3 1/3

a2 1/3 1/3 1/3

a3 1/3 1/3 1/3

a4 0 0 1

.

I now show that the SR algorithm always converges to an allocation even when it never

reaches one. For every Round i of the SR algorithm, I construct the allocation ξi =

(ξia,c)a∈A,c∈C such that for every agent a and every category c, ξia,c = min{dia, xia,c}. By

construction, ξia ≤ 1 for every agent a so ξi is indeed an allocation.8 I also define the matrix

zi = xi − ξi to be the excess supply in Round i of the SR algorithm. For every agent a,

zia =
∑

c∈C z
i
a,c can be interpreted as the capacity that a is allocated in addition to the one

unit that she requires. I denote the total excess supply by |zi| =
∑

a∈A z
i
a =

∑
a∈A

∑
c∈C z

i
a,c.

In Example 2, the total excess supply is 1/3 in Round 3 (a1 and a3 are each allocated 7/6)

and is halved in every subsequent round; hence, it converges to zero.

Proposition 2. For every Round i ≥ 1 of the SR algorithm, |zi+1| ≤ |zi| ≤ |A|(|C| − 1)/i.

There is a relatively simple intuition for why the total excess supply decreases throughout

the SR algorithm. If in some round an agent is allocated more than one unit in aggregate,

that extra capacity is reallocated in the next round. It may be reallocated to an agent who

was already allocated one unit in aggregate, in which case it continues to count toward the

total excess supply, or to an agent who was not yet allocated one unit in aggregate. In

the latter case, as agents always keep the capacity that they are allocated up to one unit,

the extra capacity no longer counts toward the excess supply in any subsequent round. In

Example 2, the excess supply is halved in every Round i ≥ 4 because half of the excess

supply is reallocated to a1 and a3, who have already been allocated one unit, and the other

half is allocated to a4, who has not. The intuition for the upper bound is that as excess

supply is reallocated, categories allocate capacity to agents further down their priority order.

Eventually, categories must reach the bottom, so there is a bound on how much excess supply

can be reallocated throughout the algorithm.

Proposition 2 implies that the total excess supply converges to zero. As every element

of zi is weakly positive, each element must also converge to zero. Therefore, xi and ξi must

converge to each other, and we have the following corollary.

8I prove formally that ξi is an allocation in Appendix A (Lemma A.3).
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Corollary 1. limi→∞ z
i = 0 and ξSR = limi→∞ ξ

i = limi→∞ x
i.

Corollary 1 guarantees that ξSR is well defined. As ξi is an allocation in every Round i of

the SR algorithm, it is natural to think that its limit ξSR is an allocation as well. I formally

show this in Appendix B, which completes the proof of Theorem 1.

Example 2 has three categories, which leaves open the question of whether an example

exists that has only two categories and for which the SR algorithm runs indefinitely without

finding an allocation. The next result answers this question in the negative.

Proposition 3. Suppose that |C| = 2. Then, the SR algorithm finds the SR allocation after

fewer than 8|A| rounds.

The reason the SR algorithm does not find an allocation in Example 2 is that in each

round, half of the capacity that a1 and a3 release goes to a4 through c2, while the other half

goes back to a1 and a3. Such a situation cannot occur with only two categories because the

amount of capacity than an agent releases cannot be split among several categories.

Proposition 3 implies that the SR algorithm works in polynomial time when there are

only two categories, as the number of rounds required increases linearly with the number of

agents. In Section 5, I show that linear programming can be added to the SR algorithm to

generalize that lower bound to an arbitrary number of categories.9

4.3 Properties of the SR Allocation

Having defined the SR allocation, I now turn to its properties in regard to the axioms defined

in Section 3.3.

Theorem 2. The SR allocation satisfies Axioms 1-4.

The capacity allocation stage of the SR algorithm is constructed in such a way that,

in every Round i, xi satisfies Axioms 1-3 because each category allocates its capacity to

its eligible agents in order of priority. The reason xi also satisfies Axiom 4 is found in the

demand adjustment stage. An agent’s demand sets an upper bound on how much capacity

each category can allocate to that agent in subsequent rounds; thus, it ensures that all

categories that would allocate at least that upper bound allocate the same amount to that

agent. Theorem 2 follows from the fact that these properties continue to hold in the limit.

Theorem 2 makes the SR allocation an appealing solution for a rationing problem with

reserves. The allocation satisfies the natural requirements in Axioms 1-3 and ensures that

9The case in which |C| = 1 is trivial: the SR algorithm ends after one round, and the q agents with the
highest priority for the unique category are allocated a unit.
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an agent who qualifies for multiple categories affects the quotas of each of those categories

equally. This is in contrast to most existing solutions, which assign each agent to one category.

A natural question at this point is whether the SR allocation is the only one to possess those

properties. The next example shows that this is not the case; however, I show that any

alternative allocation that satisfies Axioms 1-4 generates the same aggregate allocation.

Example 3. There are two agents and two categories, each with a quota of 1. The priorities

are πc1 : a1, a2, ∅ and πc2 : a2, a1, ∅.

In Example 3, the SR algorithm reaches the allocation

ξSR =

( c1 c2

a1 1 0

a2 0 1

)

in Round 1: each category allocates one unit to its highest-priority agent, and no demand

adjustment is required. However, for any λ ∈ [0.5, 1], the allocation

ξλ =

( c1 c2

a1 λ 1− λ
a2 1− λ λ

)

satisfies Axioms 1-4. To see this, notice that ξλ trivially satisfies Axioms 1-3 since every

agent is eligible for every category and ξλa1 = ξλa2 = 1. If λ = 0.5, then ξλ is also trivially

category neutral since all four elements of ξλ are equal to 0.5. If λ > 0.5, then ξλa1,c2 < ξλa1,c1
and ξλa2,c1 < ξλa2,c2 ; however, Axiom 4 is not violated since ξλa1,c2 + ξλa2,c2 = 1 = qc2 and

ξλa2,c1 + ξλa1,c1 = 1 = qc1 .
10

The SR allocation may not be the sole allocation that satisfies Axioms 1-4; in fact,

there may be infinitely many such allocations. However, one aspect of Example 3 is worth

noting: for every λ ∈ [0.5, 1], ξλ allocates one unit of capacity each to a1 and a2. That

is, ρ(ξλ) = ρ(ξSR) for every λ ∈ [0.5, 1]. As the next result shows, this is not specific to

Example 3. I call the aggregate allocation ρ(ξSR) generated by the SR allocation the SR

aggregate allocation and for any allocation ξ, I call ξ SR equivalent if it generates the

SR aggregate allocation, that is, if ρ(ξ) = ρ(ξSR).

Theorem 3. Every allocation that satisfies Axioms 1-4 is SR equivalent.

The significance of Theorem 3 is that even though many allocations may satisfy Axioms 1-

4, any difference among them is immaterial, as every agent is allocated the same capacity in

10If λ < 0.5, ξλ is no longer category neutral since ξλa1,c1 < ξλa1,c2 and ξλa1,c1 < 1 = qc1 .
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aggregate. Moreover, Theorem 3 implies the following corollary, which characterizes the SR

aggregate allocation as the only one to be generated by an allocation satisfying Axioms 1-4.

Corollary 2. An aggregate allocation is generated by an allocation that satisfies Axioms 1-4

if and only if it is the SR aggregate allocation.

Finally, Theorem 3 and Corollary 2 are sharp in the sense that each of the four axioms is

needed to characterize the SR aggregate allocation.

Proposition 4. For each of Axioms 1-4, there exists a rationing problem in which an allo-

cation that is not SR equivalent satisfies the other three axioms.

Having characterized the SR aggregate allocation, I return to the SR allocation and

show that it is characterized by Axioms 1-4 and an additional simple property. For any

preallocation x and every agent a, I define da(x) as the demand of agent a associated

with x, as defined in the SR algorithm. That is, if xa < 1, then da(x) = 1; if xa = 1, then

da(x) = maxc∈C{xa,c}; and if xa > 1, then da(x) is such that
∑

c∈C min{da(x), xa,c} = 1.

I denote by d(x) = (da(x))a∈A the vector containing all of the agents’ demand associated

with x. Note that for an allocation ξ, a’s demand simplifies to

da(ξ) =

{
1 if ξa < 1

maxc∈C{ξa,c} if ξa = 1.

Theorem 4. For every allocation ξ∗ 6= ξSR that satisfies Axioms 1-4, d(ξ∗) < d(ξSR).

Theorem 4 allows full characterization of the SR allocation: it is the allocation satisfying

Axioms 1-4 with the largest demand associated with it. The intuition is as follows. The

SR algorithm initially sets every agent’s demand to one, the largest possible level. In each

round, it calculates a preallocation that satisfies Axioms 1-4 and reduces the demands to

eliminate the excess supply. Thus, the SR algorithm finds in each round an upper bound for

the demand vector in any allocation that satisfies Axioms 1-4. The algorithm continues until

the demand vector has been reduced just enough to find an allocation satisfying Axioms 1-4;

hence, it identifies the largest demand vector for which such an allocation exists.

4.4 Pure Aggregate Allocations

As units are indivisible, ultimately, each agent must be allocated either zero units or one unit

in aggregate. Formally, an aggregate allocation ρ is pure if ρa ∈ {0, 1} for every agent a. The

SR aggregate allocation is not necessarily pure; in fact, in Example 1, a3 and a5 are allocated

5/6 and 1/6, respectively, in aggregate. In such a situation, one needs to decide which of
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the agents allocated an amount of capacity strictly between zero and one in aggregate end

up receiving a unit. Formally, a pure aggregate allocation ρ is consistent with the SR

aggregate allocation ρSR = (ξSRa )a∈A if ρa = ξSRa for every agent a such that ξSRa ∈ {0, 1}.
If ρSR is not pure, then one needs to choose among those pure allocations that are consistent

with ρSR. I remain agnostic as to how that choice should be made as this is application

dependent; however, I outline two possible solutions.

A common approach in the literature (see, e.g., Budish, Che, Kojima, and Milgrom, 2013;

Kesten and Ünver, 2015) is, for each agent a, to treat ξSRa as a probability. The Birkhoff-von

Neuman theorem (Birkhoff, 1946; Von Neumann, 1953) guarantees the existence of a lottery

over pure aggregate allocations (all of which are consistent with ρSR) such that each agent a

is allocated a unit with probability ξSRa . In Example 1, a lottery would allocate the last unit

to a3 with probability 5/6 and to a5 with probability 1/6.

An alternative approach consists of allocating the remaining units to whomever has the

largest aggregate allocation. The agents whose aggregate SR allocation lies strictly between

zero and one are ordered from highest to lowest aggregate allocation (ties could be broken

randomly or through a master ranking of agents). A pure aggregate allocation consistent

with ρSR is then constructed by allocating one unit to every agent a such that ρSRa = 1 and

allocating remaining units according to the constructed order. In Example 1, the last unit

would be allocated to a3.

Whatever rule is used to choose among the pure aggregate allocations that are consistent

with ρSR, the next result shows that the impact of that choice is limited.

Proposition 5. At the SR aggregate allocation, at most |C| agents are allocated an amount

of capacity strictly between zero and one.

The intuition for Proposition 5 is that, as ξSR respects priorities, each category allocates

capacity to at most one agent who is not allocated one unit in aggregate; hence, the number

of agents who are allocated some capacity but less than one unit in aggregate cannot exceed

the number of categories. In practice, the number of categories is typically much smaller

than the number of agents; therefore, the vast majority of agents are allocated either zero

units or one unit at ρSR.

4.5 Horizontal Envelope and Smart Reserves

I conclude this section by discussing the relationship between the SR allocation and the most

closely related solution concept in the literature. Sönmez and Yenmez (2020) consider a spe-

cial case of my model in which there is a baseline priority order over the agents, one category

ranks agents solely based on that order, and each of the remaining categories prioritizes a
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set of beneficiaries and breaks ties with the baseline priority order. Their horizontal enve-

lope algorithm yields the unique allocation that maximizes the number of units allocated

to beneficiaries while respecting the baseline priority order. Pathak, Sönmez, Ünver, and

Yenmez (2020) generalize that idea and develop the concept of smart reserves, which allow

for an arbitrary number of units to be allocated by the baseline priority order before the

other categories are considered.

There are at least three important differences between that approach and the one devel-

oped in this paper. First, these two approaches pursue a different objective. The horizontal

envelope and smart reserve algorithms aim to maximize the number of beneficiaries who

are allocated a unit; otherwise, the allocation follows a baseline priority order. The aim of

the SR allocation is to respect the priority of each category and treat all categories iden-

tically. Second, the horizontal envelope and smart reserve algorithms are only defined for

a special case of the model considered in this paper, which may not fit every application.

For example, one category considered by Pathak, Sönmez, Ünver, and Yenmez (2020) would

prioritize patients with a disability and rank those agents randomly rather than following

the baseline priority order. The results presented in this paper are more general, as they

do not rely on any assumption about priorities. Third, the outcome of the smart reserves

algorithm depends on how many unreserved units are allocated before or after the reserved

units. The horizontal envelope algorithm constitutes a special case in which all unreserved

units are allocated after the reserved units; with two categories, this is equivalent to process-

ing the categories sequentially, starting with the one that has beneficiaries. In contrast, the

SR results from processesing all categories simultaneously, and only depends on the category

quotas and priorities.

The two approaches are complementary, as they make different solutions available for

market designers to choose from depending on the specificities of the application at hand.

Moreover, an interesting question for future research is whether and how the two approaches

can be combined in rationing problems with hard reserves.11 If efficiency—in the sense of

allocating as many units as possible—is a desideratum, one might consider relaxing the

category neutrality condition so that agents can be allocated more capacity from categories

that have not assigned their entire quota. For example, if fewer than 20, 000 workers with

an advanced degree apply for an H-1B visa, one might allocate to all of them one unit from

the advanced degree category even if they also qualify for the open category, thus leaving all

remaining 65, 000 visas available for applicants without an advanced degree.

11A similar approach may be useful for rationing problems with soft reserves in which a desideratum is
that each category allocates as much capacity as possible to its beneficiaries.
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Algorithm 2: Simultaneous Reserve with Linear Programming (SRLP)

Initialization Set every agent’s demand to one: d0a = 1 for every agent a.

Round i ≥ 1:

Linear Programming If either i = 1 or i > 1 and there exists an agent-category pair (a, c)
such that either xi−1a,c > xi−2a,c = 0, or xi−1a,c ≥ di−1a and xi−2a,c < di−2a , set δia = di−1a for every
agent a. Otherwise, set δia = δLPa (xi−1, di−1) (calculated by Algorithm 3) for every agent a.

Capacity Allocation For every agent a and every category c, if a is eligible for c, then
set xia,c = min{δi,max{qc −

∑
a′∈Âa,c

δia′ , 0}} and otherwise set xia,c = 0.

Termination If xia ≤ 1 for every agent a, end and output xi.

Demand Adjustment For every agent a such that xia < 1, set dia = 1. For every agent a
such that xia = 1, set dia = maxc∈C{xia,c}. For every agent a such that xia > 1, set dia such
that

∑
c∈C min{dia, xia,c} = 1.

5 Simultaneous Reserve with Linear Programming

A practical shortcoming of the SR algorithm is that it may run for infinitely many rounds. In

this section, I propose an alternative algorithm that is outcome equivalent but runs in polyno-

mial time. The simultaneous reserve algorithm with linear programming (SRLP) algorithm

is formally defined in Algorithm 2. Its structure is similar to that of the SR algorithm, but

in some rounds, it solves a linear programming problem (defined in Algorithm 3) to update

the demand of some agents.

Theorem 5. The SRLP algorithm produces ξSR after fewer than 4|A||C| rounds.

In the remainder of this section, I describe the SRLP algorithm and illustrate how it works

using Example 2. Along the way, I provide some intuition for Theorem 5, whose formal proof

can be found in Appendix D. First, a note about the running time of the SRLP algorithm is

in order. By Theorem 5, the number of rounds required is polynomial in |A||C|. For a round

in which linear programming is not used, |A|(|C|+ 2) operations are required (each category

allocates some amount of capacity to each agent and then the total capacity allocated and

demand of each agent is calculated). As linear programming can be solved in polynomial

time (Khachiyan, 1979), it follows that the SR algorithm works in polynomial time.

At the high level, the idea behind the SRLP algorithm is to identify when the SR algorithm

is at risk of slowing down and speed up the process by using linear programming. For this
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Algorithm 3: Linear Programming (LP)

.

Input Take as input a preallocation x and a demand vector d.

Linear Program Construction For every agent a, construct the set of categories for
which a is qualified and marginal: CQ(a) = {c ∈ C : xa,c ≥ da} and CM(a) = {c ∈ C : xa,c ∈
(0, da)}. Let Ã = {a ∈ A : min{|CQ(a)|, |CM(a)|} ≥ 1} be the set of agents who are qualified
and marginal for at least one category.

Let C̃ = {c ∈ C : c ∈ CM(a) for some a ∈ Ã} be the set of categories that have a marginal

agent who is qualified for another category. For every such category c ∈ C̃, let a(c) be
that category’s marginal agent, construct the set AQ(c) = {a ∈ A, xa,c ≥ da} of agents who

are qualified for c and the subset ÃQ(c) = {a ∈ Ã, xa,c ≥ da} of them who are marginal
for another category, and adapt the quota to dismiss the agents who are not marginal for
another category: q̃c = qc −

∑
a∈AQ(c)\ÃQ(c) da.

Linear Program Solving Solve the following linear programming problem:

max
(ξa(c),c)c∈C̃

∑
c∈C̃

ξa(c),c

subject to ξa(c),c ≤
1−

∑
c′∈CM (a(c))\{c} ξa(c),c′

|CQ(a(c))|+ 1

and ξa(c),c ≤ q̃c −
∑

a∈ÃQ(c)

1−
∑

c′∈CM (a) ξa,c′

|CQ(a)|
for every c ∈ C̃.

(LP 1)

Output Let the vector (ξ∗a(c),c)c∈C̃ be the solution to the linear program (LP 1). For every
agent a, set

δLPa (x, d) =

{
1−

∑
c′∈CM (a(c))\{c} ξ

∗
a(c),c′

|CQ(a(c))|+1
if a ∈ Ã

da if a ∈ A \ Ã.
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purpose, in every Round i of the SRLP algorithm, I split the agent-category pairs into three

groups. I say that agent a is qualified for category c if xia,c ≥ dia. The term captures the

idea that a has a high enough priority for c to obtain the amount of capacity she requires

from it. In contrast, if xia,c = 0, I say that agent a is unqualified for category c in Round i:

a’s priority for c is not high enough to obtain any capacity. In the intermediate case in which

0 < xia,c < dia, I say that a is marginal for c. I refer to agent a’s quality as qualified, marginal,

or unqualified as a’s status for c. Using the convention that x0 = 0, initially every agent

is unqualified for every category. Throughout the SRLP algorithm, an agent’s status for a

category may change to marginal or qualified. However, any such change is by construction

irreversible; therefore, there can be at most 2|A||C| status changes throughout the entire

algorithm. Moreover, once 2|A||C| status changes have occurred, every agent is qualified for

every category, so the only possible allocation is one in which each agent is allocated 1/|C|
from each category, and the SRLP algorithm ends. The SRLP algorithm works identically to

the SR algorithm until either it finds an allocation—in which case the SRLP algorithm ends

and returns that allocation—or a round occurs in which no status changes. In the latter case,

the SRLP algorithm uses the linear program defined in Algorithm 3 in the following round,

which ensures that either an allocation is found or at least one status changes. As a result,

at least one status changes every second round so the SRLP algorithm finds an allocation

within 4|A||C| rounds.12

Whenever no change of status has occurred in the previous round (i.e., there is no agent-

category pair (a, c) such that either xi−1a,c > xi−2a,c , or xi−1a,c > di−1a and xi−2a,c < di−2a ), the

SRLP algorithm uses Algorithm 3 to calculate a new demand vector. Algorithm 3 takes a

preallocation x and the associated demand vector d (given by the SRLP algorithm) as inputs

and returns a demand vector δLP . I next describe how Algorithm 3 works and illustrate it

with Example 2.

What the SR algorithm does is allocate the excess supply to marginal agents in each

round until either a marginal agent is allocated her demand—in which case a change of status

occurs—or there is no more excess supply—in which case an allocation has been found. As

Example 2 shows, this may take infinitely many rounds; however, linear programming allows

it to be done in just one round. The idea is to maximize the amount of capacity allocated

to marginal agents under the constraints that agents cannot be allocated more than their

demand from any category and more than one unit overall and that categories may not

allocate more than their quotas.

12As at least two status changes occur in the first round but one more round may be required once all agents
are qualified for all categories, an upper bound on the number of rounds after which the SRLP algorithm
ends is 4|A||C| − 2; see the proof of Lemma D.2 in Appendix D for a formal argument.
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Consider a Round i in which the SRLP algorithm uses linear programming. Then, x =

xi−1 and d = di−1 are the input to Algorithm 3, which calculates a demand vector δLP (x, d).

The idea behind Algorithm 3 is to first calculate an allocation ξ that satisfies Axioms 1-4

and satisfies that ξa,c = 0 for every agent-category pair (a, c) such that xa,c = 0; that is, an

agent who was unqualified for a category in Round i− 1 does not receive any capacity from

that category at ξ. The output of Algorithm 3 turns out to be the demand vector associated

with that allocation:

δLPa =

{
1 if ξa < 1

maxc∈C{ξa,c} if ξa = 1.

Every agent a who was unqualified for every category in Round i− 1 is not allocated any

capacity in aggregate: ξa = 0. Her demand thus remains one: δLPa = da = 1. Consider next an

agent a who was qualified for some categories in Round i−1 but not marginal for any. Then,

the category neutrality condition dictates that ξa,c = xa,c = 1/|CQ(a)| for every c ∈ CQ(a)

(where CQ(a) is the set of categories for which a is eligible, as calculated in Algorithm 3). It

follows that such an agent’s demand does not change either: δLPa = da = 1/|CQ(a)|. Finally,

consider an agent a who was marginal for some categories in Round i−1 but not qualified for

any. That agent’s demand in Round i−1 was then one; hence, da = 1. For every category for

which a was marginal, all lower-priority agents were unqualified;13 therefore, regardless of a’s

demand, those agents are not allocated any capacity from c. Then, what a is allocated does

not affect any other agent, and one can simply set ξa,c = 0 for every c ∈ C and δLPa = da = 1.

The agents for which linear programming is required are those in set Ã (defined in Algo-

rithm 3) who are qualified for at least one category and marginal for at least one category.

Those agents receive one unit in aggregate, so
∑

c∈CQ(a) ξa,c +
∑

c∈CM (a) ξa,c = 1 for every

a ∈ Ã. The challenge is to determine how the unit allocated to a is shared among categories.

The category neutrality condition dictates that a receive her demand from each category for

which she is qualified, so we have

|CQ(a)|δLPa +
∑

c∈CM (a)

ξa,c = 1 for every a ∈ Ã. (1)

Moreover, the category neutrality condition also dictates that every category c ∈ CM(a)

allocates to a either all of its remaining capacity or a’s demand:

ξa,c = min{δLPa , qc −
∑

a′∈Âa,c

ξa′,c} for every c ∈ CM(a).

13See Claim 6 in Appendix D for a formal statement
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By construction, Âa,c = AQ(c);14 therefore, as ξa′,c = δLPa for every a′ ∈ AQ(c) and δLPa = da

for every a′ ∈ AQ(c) \ ÃQ(c), we have∑
a′∈Âa,c

ξa′,c =
∑

a′∈AQ(c)

ξa′,c =
∑

a′∈ÃQ(c)

ξa′,c +
∑

a′∈AQ(c)\ÃQ(c)

ξa′,c =
∑

a′∈ÃQ(c)

δLPa′ +
∑

a′∈AQ(c)\ÃQ(c)

da′ .

Then, by definition, we have

qc −
∑

a′∈Âa,c

ξa′,c = qc −
∑

a′∈AQ(c)\ÃQ(c)

da′ −
∑

a′∈ÃQ(c)

δLPa′ = q̃c −
∑

a′∈ÃQ(c)

δLPa′ .

It follows that

ξa,c = min

dLPa , q̃c −
∑

a′∈ÃQ(c)

δLPa′

 for every c ∈ CM(a). (2)

The goal is then to find an allocation ξ that satisfies (1) and (2) for every agent a ∈ Ã and

every category c ∈ CM(a). The agents’ demands can be substituted out by using (1), which

yields

ξa,c = min

1−
∑

c∈CM (a) ξa,c

|CQ(a)|
, q̃c −

∑
a′∈ÃQ(c)

δLPa′

 for every a ∈ Ã and every c ∈ CM(a).

Recalling (see Algorithm 3) that C̃ is the set of categories that have a marginal agent who is

qualified for another category and that for every c ∈ C̃, c’s marginal agent is denoted a(c),

it follows that

ξa(c),c = min

1−
∑

c′∈CM (a(c)) ξa(c),c′

|CQ(a(c))|
, q̃c −

∑
a∈ÃQ(c)

1−
∑

c′∈CM (a) ξa,c′

|CQ(a)|

 for every c ∈ C̃.

Finally, by definition, c ∈ CM(a(c)), so the previous equation can be simplified to

ξa(c),c = min

1−
∑

c′∈CM (a(c))\{c} ξa(c),c′

|CQ(a(c))|+ 1
, q̃c −

∑
a∈ÃQ(c)

1−
∑

c′∈CM (a) ξa,c′

|CQ(a)|

 for every c ∈ C̃.

There are |C̃| variables and |C̃| equations, one for each category c ∈ C̃; however, those

14See again Claim 6 in Appendix D for a formal statement
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equations are not linear. What the linear program (LP 1) does is, for each c ∈ C̃, turn that

category’s equation into two constraints and maximize ξa(c),c subject to those constraints.

I illustrate how this works using Example 2. Round 4 is the first round in which no status

changes occur (see Table 4), so linear programming is used in Round 5. The inputs are

x = x4 =



c1 c2 c3

a1 5/12 3/12 5/12

a2 1/3 1/3 1/3

a3 3/12 5/12 5/12

a4 0 0 5/6

 and d = d4 =
( a1 a2 a3 a4

5/12 1/3 5/12 1
)
.

In the linear program construction stage, we have

CQ(a1) = {c1, c3} CQ(a2) = {c1, c2, c3} CQ(a3) = {c2, c3} CQ(a4) = ∅
CM(a1) = {c2} CM(a2) = ∅ CM(a3) = {c1} CM(a4) = {c3}.

Therefore, Ã = {a1, a2} and C̃ = {c1, c2}, so we have a(c1) = a3 and a(c2) = a1. It follows

that AQ(c1) = {a1, a2}, ÃQ(c1) = {a1}, AQ(c2) = {a2, a3}, and ÃQ(c2) = {a3}; hence,

q̃c1 = q̃c2 = 1− da2 = 2/3.

In the linear program solving stage, the linear program that must be solved is

max
(ξa3,c1 ,ξa1,c2 )

ξa3,c1 + ξa1,c2

subject to ξa3,c1 ≤ 1/3,

ξa1,c2 ≤ 1/3,

ξa3,c1 ≤ 2/3− (1− ξa1,c2)/2,

ξa1,c2 ≤ 2/3− (1− ξa3,c1)/2.

Setting ξa3,c1 = ξa1,c2 = 1/3 makes all four constraints hold with an equality; hence, the

vector (ξ∗a3,c1 , ξ
∗
a1,c2

) = (1/3, 1/3) is the unique solution to the linear program. Then, the

output of Algorithm 3 is the demand vector

δLP =
( a1 a2 a3 a4

1/3 1/3 1/3 1
)
.

Returning to Round 5 of Algorithm 2, the linear programming stage has produced the

demand vector δ5 = δLP . The capacity allocation stage produces the SR allocation, x5 = ξSR,

and so the SRLP algorithm ends in Round 5 and outputs the SR allocation.
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6 Conclusion

In this paper, I have proposed a new solution to rationing problems with reserves. In con-

trast to existing solutions, in which reserve categories are processed sequentially, I propose

an algorithm that processes them simultaneously. A key advantage of this approach is trans-

parency: the SR allocation depends solely on the category quotas and priorities. The key

idea is to allow an agent who is allocated one unit in aggregate to receive parts of that unit

from different categories. In fact, I show that the SR allocation is category neutral : if an

agent qualifies for multiple categories, she receives the same amount of capacity from each of

them. This is in stark contrast to sequential processing, in which an agent who qualifies for

multiple categories receives one unit from whichever is processed first. In addition to being

category neutral, the SR allocation satisfies three standard conditions: compliance with eli-

gibility criteria, nonwastefulness, and respect for priorities. I show that any other allocation

satisfying those four properties allocates in aggregate the same amount of capacity to every

agent. Finally, I show that linear programming allows the SR allocation to be computed in

polynomial time.

This paper opens up various opportunities for future research; I conclude by briefly de-

scribing four of them. First, it might be possible to tweak the SR algorithm to handle ties

in the priority profile.15 Priority ties are often present in real-world applications, and such a

solution would avoid having to break them through a lottery. Second, it would be valuable to

explore how the SR algorithm can be combined with the deferred acceptance mechanism (or

any other mechanism) so it can be used in matching markets. Third, it may be possible to

generalize the approach to sharing rules beyond category neutrality. If an agent qualifies for

two categories, with sequential processing, the category processed first allocates one unit to

that agent, while with the category neutrality condition, each category allocates half a unit

to the agent. One might consider any sharing rule in between, which would convexify of the

set of solutions provided by sequential allocation. Last, as I discuss in Section 4.5, it may be

possible to relax the category neutrality condition in rationing problems with hard reserves to

allocate more units overall. Ultimately, I hope that the ideas presented in this paper provide

a new perspective on rationing problems with reserves and pave the way toward developing

and applying new solutions in a wide range of contexts.

15See Kesten and Ünver (2015) for a similar approach without reserves.
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Appendix: Proofs

The appendix is organized as follows. I first prove a series of properties of the SR algorithm

in Appendix A, which I use in Appendix B to prove the results from Section 4. Appendix C

contains properties of the SRLP algorithm that mirror those of the SR algorithm. In Ap-

pendix D, I use these properties to prove Theorem 5.

A Properties of the SR Algorithm

I start with a series of regularity conditions.

Lemma A.1. For every agent a and every Round i such that xia > 1, there exists a unique

dia such that
∑

c∈C min{dia, xia,c} = 1. Moreover, dia ∈ (0,maxc∈C{xia,c}).

Proof. If dia ≤ 0, then
∑

c∈C min{dia, xia,c} ≤ 0 < 1. If dia = maxc∈C{xia,c}, then
∑

c∈C min{dia,
xia,c} =

∑
c∈C x

i
a,c = xia > 1. The expression

∑
c∈C min{dia, xia,c} is continuous at every dia,

strictly increasing in dia at every dia ≤ maxc∈C{xia,c}, and constant in dia at every dia ≥
maxc∈C{xia,c}. Therefore, there exists a unique value of dia such that

∑
c∈C min{dia, xia,c} = 1

and that value is an element of (0,maxc∈C{xia,c}).

Lemma A.2. For every Round i ≥ 1, xi is a preallocation and, for every agent a, dia ∈
[1/|C|, 1].

Proof. (dia ∈ [0, 1]) Toward a contradiction, suppose that dia /∈ [0, 1]. By definition, xia ≥ 1 as

otherwise dia = 1. If xia = 1, then dia = maxc∈C{xia,c}. If xia > 1, then dia ∈ (0,maxc∈C{xia,c})
by Lemma A.1. In both cases, it follows that there exists a category c ∈ C such that xia,c /∈
[0, 1]. Then, a is eligible for c, as otherwise xia,c = 0; therefore, xia,c = min{di−1a ,max{qc −∑

a′∈Âa,c
di−1a′ , 0}}, which implies that di−1a /∈ [0, 1]. By induction, it follows that d0a /∈ [0, 1], a

contradiction since d0a = 1.

(xi is a preallocation) What needs to be shown is that xia,c ∈ [0, 1] for all a ∈ A and all

c ∈ C and that
∑

a∈A x
i
a,c ≤ qc for all c ∈ C. Consider any agent a and any category c. If

xia,c /∈ [0, 1], it was established in the first part of this proof that di−1a /∈ [0, 1], a contradiction.

It remains to show that
∑

a∈A x
i
a,c ≤ qc for all c ∈ C. Consider any category c and

suppose toward a contradiction that
∑

a∈A x
i
a,c > qc. Then, there exists an agent a such

that xa,c > 0 and xia,c +
∑

a′∈Âa,c
xia′,c > qc. By definition, xia,c ≤ di−1a′ for all a′ ∈ Âa,c so

xia′,c +
∑

a′∈Âa,c
di−1a′ > qc or, equivalently, xia′,c > qc −

∑
a′∈Âa,c

di−1a′ . Again by definition,

xia,c ≤ max{qc −
∑

a′∈Âa,c
di−1a′ , 0}; therefore it must be that xa′,c = 0, a contradiction.

(dia ≥ 1/|C|) If xia < 1, the statement is trivially satisfied as dia = 1 by definition.

If xia = 1, then dia = max{c ∈ C}{xia,c}. As
∑

c∈C x
i
a,c = 1 and xia,c ∈ [0, 1], we have
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maxc∈C{xia,c} ≥ 1/|C| so dia ≥ 1/|C|. If xia > 1, then
∑

c∈C min{dia, xia,c} = 1; therefore, we

have
∑

c∈C d
i
a ≥ 1 so |C|dia ≥ 1, which is equivalent to dia ≥ 1/|C|.

For every Round i ≥ 1, let ξi to be the Round i allocation (as opposed to the Round i pre-

allocation xi) defined as follows. For every agent a and every category c, ξia,c = min{dia, xia,c}.

Lemma A.3. For every Round i ≥ 1, ξi is an allocation and, for every agent a, ξia =

min{xia, 1}.

Proof. (ξia = min{xia, 1}) Case 1 : xia ≤ 1. If xia < 1, then by definition dia = 1 and xia,c < 1

for all c ∈ C. If xia = 1, then by definition dia = maxc∈C{xia,c}. It follows that xia,c ≤ dia for

all c ∈ C; therefore,

ξia =
∑
c∈C

ξia,c =
∑
c∈C

min{dia, xia,c} =
∑
c∈C

xia,c = xia = min{xia, 1}.

Case 2 : xia > 1. By definition, dia satisfies
∑

c∈C min{dia, xia,c} = 1. It follows that

ξia =
∑
c∈C

ξia,c =
∑
c∈C

min{dia, xia,c} = 1 = min{xia, 1}.

(ξi is an allocation) By definition, for every agent a and every category c, ξia,c = min{dia, xia,c}.
As dia, x

i
a,c ∈ [0, 1], it follows that ξia,c ∈ [0, 1]. Moreover,

∑
a∈A ξ

i
a,c ≤

∑
a∈A x

i
a,c ≤ qc.

Therefore, ξi is a preallocation and it remains to show that ξa ≤ 1 for all a ∈ A, which

follows from the previously established result that ξia = min{xia, 1} for all a ∈ A.

The next lemma states that the total amount that each agent is allocated weakly increases

throughout the algorithm while each agent’s demand decreases throughout the algorithm. For

notational convenience, let ξ0 = 0|A|×|C|.

Lemma A.4. For every Round i of the SR algorithm and every agent a, ξia ≥ ξi−1a and

dia ≤ di−1a .

Proof. By definition, ξ0a = 0 and d0a = 1 and, by Lemmas A.2 and A.3, ξia, d
i
a ∈ [0, 1]; therefore

the statement holds for Round 1: ξ1a ≥ ξ0a and d1a ≤ d0a.

The remainder of the proof is by induction. For some i ≥ 2, suppose that ξi−1a ≥ ξi−2a and

di−1a ≤ di−2a for all a ∈ A (induction hypothesis). I show that ξia ≥ ξi−1a and dia ≤ di−1a .

(ξia ≥ ξi−1a ) Consider any category c. If a is not eligible for c, then by definition xi−1a,c =

xia,c = 0 and ξi−1a,c = min{di−1a , xi−1a,c } = 0; hence xia,c = ξi−1a,c = 0. If a is eligible for c, then by

definition

xi−1a,c = min{di−2a ,max{qc −
∑

a′∈Âa,c

di−2a′ , 0}};
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therefore,

ξi−1a,c = min{di−1a , di−2a ,max{qc −
∑

a′∈Âa,c

di−2a′ , 0}}.

By the induction hypothesis, di−1a ≤ di−2a ; hence

ξi−1a,c = min{di−1a ,max{qc −
∑

a′∈Âa,c

di−2a′ , 0}}. (3)

By definition,

xia,c = min{di−1a ,max{qc −
∑

a′∈Âa,c

di−1a′ , 0}}. (4)

The induction hypothesis implies that di−1a′ ≤ di−2a′ for all a′ ∈ Âa,c; therefore the right-hand

side of (4) is weakly larger than the right-hand side of (3) and xia,c ≥ ξi−1a,c .

The previous argument has established that xia,c ≥ ξi−1a,c for all c ∈ C; hence xia ≥ ξi−1a .

Combining Lemma A.3 with that result and the fact that ξi−1a ≤ 1 yields

ξia = min{xia, 1} ≥ min{ξi−1a , 1} = ξi−1a ,

which implies that ξia ≥ ξi−1a .

(dia ≤ di−1a ) Case 1 : xia < 1. Lemma A.3 and the previously established result that

ξia ≥ ξi−1a imply that

min{xia, 1} = ξia ≥ ξi−1a = min{xi−1a , 1}.

It follows that min{xia, 1} ≥ min{xi−1a , 1}, which combined with the case assumption that

xia < 1 implies that xi−1a < 1. By definition, it can therefore be concluded that dia = di−1a = 1.

Case 2 : xia ≥ 1. If xia = 1, then by definition dia = maxc∈C{xia,c}. If xia > 1, then by

definition
∑

c∈C min{dia, xia,c} = 1. Supposing that dia > maxc∈C{xia,c} yields∑
c∈C

min{dia, xia,c} =
∑
c∈C

xia,c = xia > 1,

a contradiction. Therefore, the case assumption that xia ≥ 1 implies that dia ≤ maxc∈C{xia,c}.
By definition, for every c ∈ C, xia,c = min{di−1a ,max{qc −

∑
a′∈Âa,c

di−1a′ , 0}} ≤ di−1a ;

therefore maxc∈C{xia,c} ≤ di−1a , which means that dia ≤ di−1a .

Lemma A.5. For every Round i and every agent a,

dia =

{
1 if ξia < 1

maxc∈C{ξia,c} if ξia = 1.
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Proof. Case 1 : xia < 1. In that case, by Lemma A.3, ξia = xia < 1 and, by definition, dia = 1.

Case 2 : xia = 1. In that case, by Lemma A.3, ξia = xia = 1. By definition, dia =

maxc∈C{xa,c} and, for every c ∈ C, ξia,c = min{dia, xia,c}. Combining those two results implies

that ξia,c = xia,c for all c ∈ C, and therefore dia = max{ξa,c}.
Case 3 : xia > 1. In that case, by Lemma A.3, ξia = 1 so it remains to show that dia =

maxc∈C{ξia,c}. If dia < maxc∈C{ξia,c}, then there exists c ∈ C such that dia < ξia,c. However, by

definition, ξia,c = min{dia, xia,c} ≤ dia, a contradiction. If dia > maxc∈C{ξia,c}, then by definition

dia > maxc∈C{min{dia, xia,c}}; therefore dia > xia,c for all c ∈ C so
∑

c∈C min{dia, xia,c} =∑
c∈C x

i
a,c = xia > 1. However, by definition,

∑
c∈C min{dia, xia,c} = 1, a contradiction.

Lemma A.6. For every Round i and every agent a, ξia = 1 if and only if there exists a

category c such that ξia,c = dia.

Proof. If ξia < 1, then ξia,c < 1 for all c ∈ C and, by Lemma A.5, dia = 1; therefore, ξia,c < dia

for all c ∈ C. If ξia = 1, then dia = maxc∈C{ξia,c} by Lemma A.5; hence there exists c ∈ C
such that ξia,c = dia.

Lemma A.7. For every Round i, every agent a, and every category c, either xia,c < di−1a or

ξia,c < dia implies that xia′,c = ξia′,c = 0 for every lower-priority agent a′ ∈ Ǎa,c.

Proof. By definition, ξia,c < dia implies that ξia,c = xia,c; hence, as dia ≤ di−1a by Lemma A.4,

it follows that xia,c < di−1a . Moreover, again by definition, we have ξia′,c = 0 if and only if

xia′,c = 0. Therefore, it is sufficient to show that xia,c < di−1a implies that xia′,c = 0 for every

lower-priority agent a′ ∈ Ǎa,c.
Suppose that xia,c < di−1a and consider an arbitrary lower-priority agent a′ ∈ Ǎa,c. I show

that xia′,c = 0. If a′ is not eligible for c, the desired result holds trivially since, by definition,

xia′,c = 0. For the remainder of the proof, I assume that a′ is eligible for c, which implies

that a is eligible for c as well.

As aπca
′, the assumption that a′ is eligible for c implies that a is also eligible for c.

Therefore, by definition, we have

xia,c = min{di−1a ,max{qc −
∑
ã∈Âa,c

di−1ã , 0}} < di−1a ,

which implies that qc −
∑

ã∈Âa,c
di−1ã < di−1a or, equivalently, qc −

∑
ã∈Âa,c

di−1ã − di−1a < 0. As

aπca
′, it follows that

qc −
∑

ã∈Âa′,c

di−1ã ≤ qc −
∑
ã∈Âa,c

di−1ã − di−1a < 0. (5)
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Moreover, as a′ is eligible for c, we have

xia′,c = min{di−1a ,max{qc −
∑

ã∈Âa′,c

di−1ã , 0}}. (6)

Combining (5) and (6) yields xia′,c = 0.

Lemma A.8. For every Round i, every agent a, and every category c, ξia,c > 0 implies that

xia′,c = di−1a′ and ξia′,c = dia′ for every higher-priority agent a′ ∈ Âa,c.

Proof. Suppose that ξia,c > 0. By definition, it must be that xia,c > 0 so a is eligible for c and

qc >
∑

a′∈Âa,c

di−1a′ . (7)

Consider any higher-priority agent a′ ∈ Âa,c. It needs to be shown that ξia′,c = dia′ . By (7),

qc > di−1a′ +
∑

ã∈Âa′,c
di−1ã , which is equivalent to

qc −
∑

ã∈Âa′,c

di−1ã > di−1a′ . (8)

As a is eligible for c, so is a′; hence by definition xia′,c = min{di−1a′ ,max{qc−
∑

ã∈Âa′,c
di−1ã , 0}}.

By (8), it follows that xia′,c = di−1a′ . By Lemma A.4, dia′ ≤ di−1a′ ; hence xia′,c ≥ dia′ . Using that

inequality in conjunction with the definition of ξia′,c yields ξia′,c = min{dia′ , xia′,c} = dia′ .

Lemma A.9. For every agent a and category c such that a is eligible for c, and for every

Round i, xia,c < di−1a implies that xia,c +
∑

a′∈Âa,c
xia′,c = qc.

Proof. Let ã be the highest-priority agent such that xiã,c < di−1ã . That is, xiã,c < di−1ã

and, for every a ∈ Âã,c, x
i
a′,c = di−1a′ . The assumption that xia,c < di−1a ensures that

ã exists and either ã = a or ãπca. Then, as a is eligible for c, so is ã and we have

xiã,c = min{di−1a ,max{qc −
∑

a′∈Âã,c
di−1a′ , 0}}. As xiã,c < di−1ã and xia′,c = di−1a′ for all a′ ∈ Âã,c,

it follows that xiã,c = max{qc−
∑

a′∈Âã,c
xia′,c, 0}. As xi is a preallocation (by Lemma A.2), it

must be that
∑

a′∈Âã,c
xi−1a′,c ≤ qc; therefore we can conclude that xiã,c = qc −

∑
a′∈Âã,c

xia′,c or,

equivalently, xiã,c +
∑

a′∈Âã,c
xia′,c = qc.

On the one hand, as either ã = a or ãπca, we have xia,c +
∑

a′∈Âa,c
xia′,c ≥ xiã,c +∑

a′∈Âã,c
xia′,c = qc. On the other hand, as xi is an allocation, we have xia,c+

∑
a′∈Âa,c

xia′,c ≤ qc.

Combining the two statements yields xia,c +
∑

a′∈Âa,c
xia′,c = qc.

Lemma A.10. In every Round i, xi satisfies Axioms 1-4 and ξi satisfies Axioms 1 and 3.
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Proof. (xi and ξi comply with eligibility requirements) By definition, if an agent a is not

eligible for a category c, then xia,c = ξia,c = 0.

(xi is nonwasteful) Consider any category c such that
∑

a∈A x
i
a,c < qc and any agent a

who is eligible for c. It needs to be shown that xia ≥ 1.

Case 1 : xia,c = di−1a . By the case assumption and Lemma A.4, xia,c = di−1a ≥ dia; hence, by

definition, ξia,c = min{dia, xia,c} = dia. By Lemma A.6, it follows that ξia = 1 so, by definition,

xia ≥ ξia = 1.

Case 2 : xia,c < di−1a . In that case, Lemma A.9 applies and yields xia,c +
∑

a′∈Âa,c
xia′,c = qc.

Then, we have
∑

a∈A x
i
a,c ≥ xia,c +

∑
a′∈Âa,c

xia′,c = qc, which contradicts the assumption that∑
a∈A x

i
a,c < qc.

(xi and ξi respect priorities) Arbitrarily fix an agent a and a category c. By Lemma A.3,

xia < 1 if and only if ξia < 1 and, by definition, xia,c = 0 if and only if ξia,c. It follows that

xi respects priorities if and only if ξi respects priorities; hence it is enough to show that ξi

respects priorities. Suppose that ξia < 1. To establish that ξi respects priorities, I need to

show that, for every lower-priority agent a′ ∈ Ǎa,c, ξia′,c = 0. By Lemma A.6, the assumption

that ξia < 1 implies that ξia,c < dia so, by Lemma A.7, ξia′,c = 0.

(xi is category neutral) Consider any agent a and any category c such that a is eligible

for c and xia,c < maxc′∈C{xa,c′}. It needs to be shown that xia,c +
∑

a′∈Âa,c
xa′,c = qc. By

definition, maxc′∈C{xia,c′} ≤ di−1a ; hence we have xia,c < di−1a . Then, by Lemma A.9, we have

xia,c +
∑

a′∈Âa,c
xia′,c = qc.

Lemma A.11. For every agent a and every category c, zia,c ∈ [0, 1]. Moreover, |zi| = 0 if

and only if xi = ξi.

Proof. (zia,c ∈ [0, 1]) By definition, zia,c = xia,c−ξia,c = xia,c−min{dia, xia,c} = max{xia,c−dia, 0}.
As xia,c, d

i
a ∈ [0, 1] (by Lemma A.2), it follows that zia,c ∈ [0, 1].

(|zi| = 0 if and only if xi = ξi) If xi = ξi, then, for every a ∈ A and every c ∈ C, xa,c = ξa,c

so za,c = xa,c − ξa,c = 0. It follows that |zi| =
∑

a∈A
∑

c∈C z
i
a,c = 0. If xi 6= ξi, then there

exist a ∈ A and c ∈ C such that xia,c 6= ξia,c so za,c 6= 0. As zia,c ∈ [0, 1] for all a ∈ A and all

c ∈ C, it follows that |zi| =
∑

a∈A
∑

c∈C z
i
a,c > 0.

Lemma A.12. Suppose that, for some Round i ≥ 1, |zi| = 0. Then, for every Round j ≥ i,

|zj| = 0, xj = ξj = xi = ξi, and, for every agent a, dja = dia.

Proof. Fix an agent a and a category c arbitrarily. The main part of the proof consists in

showing that xi+1
a,c = xia,c. By definition, if a is not eligible for c, then xi+1

a,c = xia,c = 0;

therefore I focus throughout on the case in which a is eligible for c.
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(xi+1
a,c ≥ xia,c) By definition, xi+1

a,c = min{dia,max{qc −
∑

a′∈Âa,c
dia′ , 0}}. By assumption,

|zi| = 0 so, by Lemma A.11, xia,c = ξia,c. As, by definition, ξia,c = min{xia,c, dia}, it follows that

xia,c ≤ dia. Therefore, it remains to show that xia,c ≤ max{qc −
∑

a′∈Âa,c
dia′ , 0}.

By definition, xia,c = min{di−1a ,max{qc −
∑

a′∈Âa,c
di−1a′ , 0}}; hence xia,c ≤ max{qc −∑

a′∈Âa,c
di−1a′ , 0}. By Lemma A.4,

∑
a′∈Âa,c

di−1a′ ≥
∑

a′∈Âa,c
dia′ ; therefore, we have xia,c ≤

max{qc −
∑

a′∈Âa,c
di−1a′ , 0} ≤ max{qc −

∑
a′∈Âa,c

dia′ , 0}.
(xi+1

a,c ≤ xia,c) Case 1 : aπcã. By the case assumption, xia,c = di−1a . By definition, xi+1
a,c =

min{dia,max{qc −
∑

a′∈Âa,c
dia′ , 0}} so xi+1

a,c ≤ dia. By Lemma A.4, dia ≤ di−1a ; therefore, we

have xi+1
a,c ≤ dia ≤ di−1a = xia,c.

Case 2 : a = ã. By the case assumption, xia,c < di−1a and xia′,c = di−1a′ for every a′ ∈ Âa,c.
By definition, xia,c = min{di−1a ,max{qc −

∑
a′∈Âa,c

di−1a′ , 0}} so, as xia,c < di−1a , we have

xia,c = max{qc −
∑

a′∈Âa,c

di−1a′ , 0}. (9)

Again by definition, we have

xi+1
a,c = min{dia,max{qc −

∑
a′∈Âa,c

dia′ , 0}}. (10)

For every a′ ∈ Âa,c, x
i
a′,c = di−1a′ by the case assumption, xia′,c = xi+1

a′,c by the result shown

in Case 1, xi+1
a′,c ≤ dia′ by definition, and dia′ ≤ di−1a′ by Lemma A.4. Therefore, it can be

concluded that dia′ = di−1a′ for all a′ ∈ Âa,c. Combining that result with (9) and (10) yields

xi+1
a,c ≤ max{qc −

∑
a′∈Âa,c

dia′ , 0} = max{qc −
∑

a′∈Âa,c

di−1a′ , 0} = xia,c.

Case 3 : ãπca. By definition, as xiã,c < di−1ã , xiã,c = max{qc −
∑

a′∈Âa,c
di−1a′ , 0}. As was

shown in Case 2, dia′ = di−1a′ for all a′ ∈ Âã,c; therefore we have xiã,c = max{qc−
∑

a′∈Âa,c
dia′ , 0},

which implies that qc − xiã,c −
∑

a′∈Âa,c
dia′ ≤ 0. As was shown in Case 2, xiã,c = xi+1

ã,c and, by

definition, xi+1
ã,c ≤ diã; therefore, we have qc − diã −

∑
a′∈Âa,c

dia′ ≤ 0. As ãπca,
∑

a′∈Âa,c
dia′ ≥

diã +
∑

a′∈Âã,c
dia′ ; hence it follows that qc −

∑
a′∈Âa,c

dia′ ≤ 0. Combining that last inequality

with the definition of xi+1
a yields xi+1

a = 0. By Lemma A.2, xia ≥ 0 so it can be concluded

that xi+1
a ≤ xia.

As a and c were chosen arbitrarily, xi+1
a,c = xia,c holds for every agent and every category;

therefore we have xi+1 = xi. Then, by definition, di+1
a = dia for every agent a, and ξi+1 = ξi.

The result extends to every j > i+ 1 by induction.
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Lemma A.13. Suppose that, for some agent a, some category c, and some Round i ≥ 1,

xia,c < dia. Then, for every j ≤ i, xja,c ≤ xia,c < dja.

Proof. If a is not eligible for c, then xja,c = 0 for every j ≥ 1 and the result holds as, by

Lemma A.2, dja > 0. The remainder of the proof focuses on the case in which a is eligible

for c.

By definition, xia,c = min{di−1a ,max{qc −
∑

a′∈Âa,c
di−1a′ , 0}} and, by Lemma A.4, the

assumption that xia,c < dia implies that xia,c < di−1a . It follows that xia,c = max{qc −∑
a′∈Âa,c

di−1a′ , 0}. Again by definition, xi−1a,c ≤ max{qc−
∑

a′∈Âa,c
di−2a′ , 0} and, by Lemma A.4,∑

a′∈Âa,c
di−2a′ ≥

∑
a′∈Âa,c

di−1a′ ; hence we have xi−1a,c ≤ xia,c < di−1a . By induction, the statement

holds for every j ≤ i.

Lemma A.14. Suppose that, for some agent a, some category c and some Round i ≥ 1,

xia,c ≥ dia. Then, for every j > i, xja,c = dj−1a ≥ dja.

Proof. By definition, xia,c ≤ max{qc −
∑

a′∈Âa,c
di−1a′ , 0}, which, combined with the assump-

tion that xia,c ≥ dia, implies that max{qc −
∑

a′∈Âa,c
di−1a′ , 0} ≥ dia. By Lemma A.4, it fol-

lows that max{qc −
∑

a′∈Âa,c
dia′ , 0} ≥ dia. By definition, we have xi+1

a,c = min{dia,max{qc −∑
a′∈Âa,c

dia′ , 0}} = dia. Then, by Lemma A.4, it follows that xi+1
a,c = dia ≥ di+1

a and the

statement holds for all j > i by induction.

Lemma A.15. For every allocation ξ∗ that satisfies Axioms 1-4, every Round i of the SR

algorithm, every agent a, and every category c, ξ∗a ≥ ξia and ξ∗a,c ≤ dia.

Proof. By definition, for every agent a and every category c, d0a = 1 and ξ∗ is an allocation so

ξ∗a,c ≤ 1 = d0a. The remainder of the proof is by induction. Arbitrarily fixing a Round i ≥ 1,

I assume that ξ∗a,c ≤ di−1a for every agent a and every category c (induction hypothesis) and

show that ξ∗a ≥ ξia and ξ∗a,c ≤ dia for every agent a and every category c.

(ξ∗a ≥ ξia for every a ∈ A) Arbitrarily fix an agent a. By Lemma A.3, ξ∗a ≤ 1 and ξia ≤ 1

so the desired result holds trivially if ξ∗a = 1, and therefore only the case in which ξ∗a < 1

needs to be considered. Arbitrarily fixing a category c, I show that, in this case, ξ∗a,c ≥ ξia,c.

That result holds trivially if ξia,c = 0; hence I assume for the remainder of the argument that

ξia,c > 0.

As ξi complies with eligibility requirements (by Lemma A.10), the assumption that ξia,c >

0 implies that a is eligible for c; hence, by definition, we have

ξia,c = min{dia, xia,c} = min{dia, di−1a ,max{qc −
∑

a′∈Âa,c

di−1a′ , 0}}.
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It follows that ξia,c ≤ max{qc −
∑

a′∈Âa,c
di−1a′ , 0} so the assumption that ξia,c > 0 implies that

ξia,c ≤ qc −
∑

a′∈Âa,c

di−1a′ . (11)

By the induction hypothesis, ξ∗a′,c ≤ di−1a′ for every a′ ∈ Âa,c; therefore (11) implies that

ξia,c ≤ qc −
∑

a′∈Âa,c
ξ∗a,c, which is equivalent to

ξia,c +
∑

a′∈Âa,c

ξ∗a,c ≤ qc. (12)

By assumption, ξ∗a,c is nonwasteful and ξ∗a < 1; hence, as a is eligible for c, we have

ξ∗a,c +
∑

a′∈Âa,c

ξ∗a,c = qc. (13)

Combining (12) and (13) implies that ξ∗a,c ≥ ξia,c. As c was chosen arbitrarily, that inequality

holds for all categories and it can be concluded that ξ∗a =
∑

c∈C ξ
∗
a,c ≥

∑
c∈C ξ

i
a,c = ξia. As a

was chosen arbitrarily, it follows that ξ∗a ≥ ξia for every a ∈ A.

(ξ∗a,c ≤ dia for every a ∈ A and every c ∈ C) Arbitrarily fix an agent a and a category c.

Toward a contradiction, suppose that ξ∗a,c > dia. As ξ∗a,c ≤ 1 (by Lemma A.3), it follows that

dia < 1. Then, Lemma A.5 implies that dia = maxc′∈C{ξia,c′} and ξia = 1. It follows that

ξia,c ≤ max
c′∈C
{ξia,c′} = dia < ξ∗a,c ≤ max

c′∈C
{ξ∗a,c′}. (14)

Moreover, as ξ∗a ≤ 1 (by Lemma A.3) and as it was established in the previous part of the

proof that ξ∗a ≥ ξia, the fact that ξia = 1 implies that

ξia =
∑
c′∈C

ξia,c′ =
∑
c′∈C

ξ∗a,c′ = ξ∗a = 1. (15)

As (14) implies that ξia,c < ξ∗a,c, it follows by (15) that there exists a category c̃ ∈ C such that

ξ∗a,c̃ < ξia,c̃. (16)

By definition, ξia,c̃ ≤ maxc′∈C{ξia,c′} and, by (14), maxc′∈C{ξia,c′} ≤ maxc′∈C{ξ∗a,c′}; therefore,

(16) implies that ξ∗a,c̃ < maxc′∈C{ξ∗a,c′}. As ξ∗ is category neutral (by assumption), it follows
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that

ξa,c̃ +
∑

a′∈Âa,c̃

ξ∗a′,c̃ = qc̃. (17)

Next, (16) implies that ξia,c̃ > 0. As ξi complies with eligibility requirements (by Lemma A.10),

it follows that a is eligible for c̃ so, by definition,

ξia,c̃ = min{dia, xia,c̃} = min{dia, di−1a ,max{qc̃ −
∑

a′∈Âa′,c̃

di−1a′ , 0}}.

It follows that ξia,c̃ ≤ max{qc̃ −
∑

a′∈Âa′,c̃
di−1a′ , 0}; hence ξia,c̃ > 0 implies that ξia,c̃ ≤ qc̃ −∑

a′∈Âa′,c̃
di−1a′ or, equivalently, ξia,c̃ +

∑
a′∈Âa′,c̃

di−1a′ ≤ qc̃. By the induction hypothesis, ξ∗a,c̃ ≤
di−1a′ for every a′ ∈ Âa,c̃; hence we have ξia,c̃ +

∑
a′∈Âa′,c̃

ξ∗a′,c̃ ≤ qc̃. By (17), it follows that

ξia,c̃ ≤ ξ∗a,c̃, which contradicts (16).

Lemma A.16. For every agent a and every allocation ξ∗ that satisfies Axioms 1-4, maxc∈C{ξ∗a,c} ≤
maxc∈C{ξSRa,c }.

Proof. Toward a contradiction, suppose to the contrary that maxc∈C{ξ∗a,c} > maxc∈C{ξSRa,c }.
Then, there exists a category c′ such that ξ∗a,c′ > ξSRa,c′ . By Theorem 3, we have ξ∗a = ξSRa so,

by definition,
∑

c∈C ξ
∗
a,c =

∑
c∈C ξ

SR
a,c . Then, the fact that ξ∗a,c′ > ξSRa,c′ implies there exists a

category c̃ such that

ξ∗a,c̃ < ξSRa,c̃ . (18)

It follows that ξ∗a,c̃ < maxc∈C{ξ∗a,c} so, as ξ∗ is category neutral, we have ξ∗a,c̃+
∑

a′∈Âa,c
ξ∗a′,c̃ =

qc̃. Moreover, ξSRa,c̃ +
∑

a′∈Âa,c
ξSRa′,c̃ ≤ qc̃ by definition since ξSR is an allocation. It follows that

ξSRa,c̃ +
∑

a′∈Âa,c

ξSRa′,c̃ ≤ ξ∗a,c̃ +
∑

a′∈Âa,c

ξ∗a′,c̃,

which combined with (18) implies that .∑
a′∈Âa,c

ξSRa′,c̃ <
∑

a′∈Âa,c

ξ∗a′,c̃. (19)

By (18), we have ξSRa,c̃ > 0; hence, by definition, limi→∞ ξ
i
a,c̃ > 0. Similarly, (19) implies by

definition that limi→∞
∑

a′∈Âa,c
ξia′,c̃ <

∑
a′∈Âa,c

ξ∗a′,c̃. Then, there exists a Round i such that

ξia,c̃ > 0 and (20)∑
a′∈Âa,c̃

ξia′,c̃ <
∑

a′∈Âa,c̃

ξ∗a′,c̃. (21)
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By Lemma A.8, (20) implies that ξia,c̃ = dia′ for all a′ ∈ Âa,c, which combined with (21)

implies that
∑

a′∈Âa,c̃
dia′ <

∑
a′∈Âa,c̃

ξ∗a′,c̃. Therefore, there exists an agent a′ ∈ Âa,c̃ such that

dia′ < ξ∗a′,c̃, which contradicts Lemma A.15.

B Proof of the Results from Section 4

Proof of Theorem 1

I have shown in the main text that ξSR is well defined and equal to both limi→∞ x
i and

limi→∞ ξ
i. It remains to show that ξSR is an allocation. Arbitrarily fix an agent a and a

category c. By definition, it needs to be shown that (i) ξSRa,c ∈ [0, 1], (ii)
∑

a′∈A ξ
SR
a′,c ≤ qc, and

(iii) ξSRa ≤ 1.

(ξSRa,c ∈ [0, 1]) Case 1: ξia,c < dia for every i ≥ 1. By definition, the case assumption implies

that xia,c < dia for every i ≥ 1, which by Lemma A.13 implies that xja,c ≤ xia,c < dja for every

i, j ≥ 1 with j ≤ i. By definition, it follows that the series {ξia,c}∞i=1 is weakly increasing.

By Lemma A.2, that series is bounded. Then, the Monotone Convergence Theorem implies

that limi→∞ ξ
i
a,c is equal to the series’ supremum. By Lemma A.2, every element of the series

{ξia,c}∞i=1 is an element of [0, 1]; hence so is its supremum.

Case 2: ξia,c = dia for some i ≥ 1. By definition, the case assumption implies that xia,c ≥ dia;

hence Lemma A.14 implies that xja,c ≥ dja for every j ≥ i. Again by definition, it follows that

ξja,c = dja for all j ≥ i, which implies that limi→∞ ξ
i
a,c = limi→∞ d

i
a so it remains to show that

limi→∞ d
i
a ∈ [0, 1].

The series {dia}∞i=1 is weakly decreasing by Lemma A.4 and bounded below by Lemma A.2.

By the Monotone Convergence Theorem, limi→∞ d
i
a is then equal to the infimum of the series

{dia}∞i=1. By Lemma A.2, every element of that series is an element of [1/|C|, 1]; hence so is

its infimum.

(
∑

a′∈A ξ
SR
a,c ≤ qc) As limi→∞ ξ

i
a′,c ∈ [0, 1] for every a′ ∈ A,

∑
a′∈A ξ

SR
a′,c = limi→∞(

∑
a′∈A ξ

i
a′,c) =∑

a′∈A(limi→∞ ξ
i
a′,c) converges to a real number. By Lemma A.3, ξi is an allocation for every

i ≥ 1; therefore every element of the series {
∑

a′∈A ξ
i
a′,c}∞i=1 is weakly smaller than qc. Then,

the number to which the series converges cannot exceed qc.

(ξSRa ≤ 1) As limi→∞ ξ
i
a,c′ ∈ [0, 1] for every c′ ∈ C, ξSRa =

∑
c′∈C ξ

SR
a,c′ = limi→∞(

∑
c′∈C ξ

i
a,c′) =∑

c′∈C(limi→∞ ξ
i
a,c′) is equal to a real number. By Lemma A.3, ξi is an allocation for every

i ≥ 1; therefore every element of the series {ξia}∞i=1 is weakly smaller than 1. Then, the

number to which the series converges cannot exceed 1.

44



Proof of Proposition 2

(|zi+1| ≤ |zi|) By definition, |zi+1| = |xi+1| − |ξi+1| and |zi| = |xi| − |ξi and, by Lemma A.4,

|ξi+1| ≥ |ξi|; therefore, it remains to show that |xi+1| ≤ |xi|.
Consider first any category c such that

∑
a∈A x

i
a,c < qc. I show that, for every a ∈ A,

xia,c =

{
0 if a is not eligible for c

di−1a if a is eligible for c.
(22)

If a is not eligible for c, then xia,c = 0 by definition; therefore, it remains to show that,

if a is eligible for c, then xia,c = di−1a . Toward a contradiction, suppose that a is eligible

for c and xia,c 6= di−1a . Let ã be the highest-priority agent in that situation; that is, ã is

eligible for c, xiã,c 6= di−1ã , and, for every a′ ∈ Âã,c, xia′,c = dia′ . By definition, as ã is eligible

for c, xiã,c = min{di−1ã ,max{qc−
∑

a′∈Âã,c
di−1a′ , 0}} so the assumption that xiã,c 6= di−1ã implies

that xiã,c < di−1ã . It follows that xiã,c = max{qc −
∑

a′∈âã,c d
i−1
a′ , 0}; therefore, qc − xiã,c −∑

a′∈Âã,c
di−1a′ ≤ 0. Combining the last inequality with the assumption that xia′,c = di−1a′

for every a′ ∈ Âã,c yields qc − xiã,c −
∑

a′∈Âã,c
xia′,c ≤ 0. It can then be concluded that∑

a∈A x
i
a,c ≥ xiã,c +

∑
a′∈Âã,c

xia′,c ≥ qc, a contradiction; hence (22) holds for every agent a.

Letting Ac = {a ∈ A : aπc∅} denote the set of agents that are acceptable for c, it follows that∑
a∈A x

i
a,c =

∑
a∈Ac

di−1a .

Consider now any category c′. By Lemma A.2,
∑

a∈A x
i
a,c′ ≤ qc′ and, by the previ-

ous argument,
∑

a∈A x
i
a,c′ < qc′ implies that

∑
a∈A x

i
a,c′ =

∑
a∈Ac′

di−1a . It follows that∑
a∈A x

i
a,c′ = min{qc′ ,

∑
a∈Ac′

di−1a } for every c′ ∈ C. Therefore, we have |xi| =
∑

c′∈C min{qc′ ,∑
a∈Ac′

di−1a } and, analogously, |xi+1| =
∑

c′∈C min{qc′ ,
∑

a∈Ac′
dia}; hence, Lemma A.4 implies

that |xi+1| ≤ |xi|.
(|zi| ≤ |A|(|C| − 1)/i)) Fix an agent a and a category c. I first show that

i∑
j=1

zja,c ≤ 1− 1/|C|. (23)

By definition,

i∑
j=1

zja,c =
i∑

j=1

(xja,c − ξja,c) =
i∑

j=1

(xja,c −min{dja, xja,c}) =
i∑

j=1

max{xja,c − dja, 0}. (24)

If xja,c ≤ dja for all j = 1, . . . , i, then (23) holds trivially as (24) implies that
∑i

j=1 z
j
a,c = 0.

Otherwise, let k = 1, . . . , i be the first round in which a receives her demand from c; that is,

xka,c ≥ dka and xja,c < dja for all j = 1, . . . , k − 1. Then, by Lemma A.14, xja,c = dj−1a for all
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j = k + 1, . . . , i. By (24), we have

i∑
j=1

zja,c =
i∑

j=1

max{xja,c − dja, 0} =
i∑

j=k

(xja,c − dja) = xka,c − dia +
i∑

j=k+1

(xja,c − dj−1a ) = xka,c − dia.

Then, (23) is satisfied as, by Lemma A.2, xka,c ≤ 1 and dia ≥ 1/|C|.
As a and c were chosen arbitrarily, (23) holds for every agent and every category; therefore,

we have
∑i

j=1 |zj| ≤ |A||C|(1−1/|C|) = |A|(|C|−1). The first part of the proof has established

that |zi+1| ≤ |zi| and that result holds in every round; hence |zi| ≤ |zj| for all j ≤ i. It

can then be concluded that i|zi| ≤
∑i

j=1 |zj| ≤ |A|(|C| − 1), which implies that |zi| ≤
|A|(|C| − 1)/i.

Proof of Proposition 3

I use for the SR algorithm the terminology introduced in Section 5 for the SRLP algorithm.

That is, for any Round i of the SR algorithm, any agent a, and any category c, I say that that

a is qualified for c is xia,c ≥ dia, a is marginal for c is 0 < xia,c < dia, and a is unqualified for c if

xia,c = 0. I refer to agent a’s quality as either qualified, marginal or qualified as a’s status for

c. Using the convention that x0 = 0, every agent is initially unqualified for every category.

By Lemmas A.13 and A.14, a change of status is irreversible; therefore, throughout the SR

algorithm, the status of any agent a for any category c can change at most twice: once from

unqualified to marginal and once from marginal to qualified. As |C| = 2, it follows that there

may be at most 4|A| status changes throughout the SR algorithm. The key part of the proof

is to show that at least one status changes every second round until the SR algorithm finds

an allocation.

Claim 1. Suppose that, for some i ≥ 2, the status of every agent a for every category c is

the same in Rounds i− 1, i, and i+ 1. Then, xi+1 is an allocation.

Proof. Consider an agent-category pair (a, c) such that a is marginal for c in Round i, i.e.,

0 < xia,c < dia. Consider another agent a′ and suppose first that a′ has a lower priority for c,

i.e., aπca
′. By Lemma A.4, xia,c < di−1a so, by Lemma A.7, xia′,c = 0 and a′ is unqualified for

c. Suppose instead that a′ has a lower priority for c, i.e., a′πca. By Lemma A.8, ξa′,c = dia′ ;

hence by definition xia′,c ≥ dia′ and a′ is qualified for c. It can then be concluded that, for any

category, there is at most one marginal agent and, if such an agent exists, all higher-priority

agents are qualified while all lower-priority agents are unqualified for that category.

Next, consider an agent a who is not marginal for either category in Rounds i− 1, i, and

i + 1 (by assumption, a’s status for each category is the same in all three rounds). If a is
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unqualified for at least one category, then she receives capacity from at most one category so

her aggregate allocation cannot exceed one: xi−1a , xia, x
i+1
a ≤ 1. By definition it follows that

di−1a = dia = di+1
a = 1. Therefore, for each category c, xi−1a,c = xia,c = xi+1

a,c ∈ {0, 1}. Suppose

next that a is qualified for both categories in all three rounds. Then, xi−1a,c ≥ di−1a for each c

and, as di−1a ≥ 0.5 by Lemma A.2, it must be that xi−1a,c ≥ 0.5 for each c. By definition, it

follows that di−1a = 0.5. As the demand decreases throughout the SR algorithm (Lemma A.4)

but cannot fall below 0.5 (Lemma A.2), we then have that t di−1a = dia = di+1
a = 0.5, which

by Lemma A.14 implies that xia,c = xi+1
a,c = 0.5 for each c. It can then be concluded that, for

every agent a who is not marginal for either category and for every category c,

xia,c = xi+1
a,c ∈ {0, 0.5, 1}, xi+1

a ≤ 1, and di−1a = dia = di+1
a ∈ {0.5, 1}. (25)

I now show that xi+1 is an allocation; that is, I show that no agent is allocated more than

one unit, i.e., xi+1
a ≤ 1 for every agent a. If no agent is marginal for either category, (25)

implies that result. As there are two categories and at most one agent is marginal for each,

there are at most two agents who are marginal for at least one of the categories. I consider

separately the case in which there is one and the case in which there are two such agents.

Case 1 : one marginal agent. Let a1 be the only agent who is marginal for at least one

category in Rounds i− 1, i, and i+ 1. Toward a contradiction, suppose that xi+1
a1

> 1. If a1

is marginal for both categories, she receives from each an amount of capacity smaller than

her demand; therefore, by Lemma A.6, ξi+1
a < 1, which by Lemma A.3 implies that xi+1

a < 1,

a contradiction. Therefore, a1 is marginal for one category but not the other. Let c1 be the

category for which a1 is marginal and c2 be the other category. If a1 is unqualified for c2, then

xi+1
a1

= xi+1
a1,c1
≤ 1, a contradiction; therefore, a1 is qualified for c2 in Rounds i−1, i, and i+1.

Then, for every j = i − 1, i, i + 1, we have xja1,c1 < dja1 ≤ xja1,c2 so, by Lemma A.6, ξja1 = 1

and, by Lemma A.3, xja1 ≥ 1. By definition, if xja1 = 1 then dja1 = max{xja1,c1 , xa1,c2} = xa1,c2

and, if xja1 > 1, then min{dja1 , x
j
a1,c1
}+min{dja1 , x

j
a1,c2
} = 1. Therefore, in both cases, we have

xja1,c1 + dja1 = 1 for every j = i− 1, i, i+ 1. Next, as a1 is marginal for c1, Lemma A.9 implies

that xja1,c1 +
∑

a′∈Âa1,c1
xja′,c1 = qc1 ; hence, by (25), we have xia1,c1 = xi+1

a1,c1
, which implies that

dia1 = di+1
a1

. Last, Lemma A.14 implies that xi+1
a1,c2

= dia1 . It follows that

xi+1
a1,c1

+ xi+1
a1,c2

= xi+1
a1,c1

+ dia1 = xi+1
a1,c1

+ di+1
a1

= 1,

a contradiction. By (25), it can then be concluded that xi+1 does not allocate more than one

unit to any agent in aggregate; hence xi+1 is an allocation.

Case 2 : two marginal agents. Denote by a1 the agent who is marginal for category c1

and by a2 the agent who is marginal for category c2. If a2 is unqualified for c1, then xi+1
a2

=
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xi+1
a2,c2
≤ 1 and analogous reasoning to that in Case 1 establishes that xi+1

a1
≤ 1 so, by (25),

xi+1 is an allocation. Analogously, xi+1 is an allocation if a1 is unqualified for c2. Therefore,

I focus on the case in which a1 is qualified for c2 and a2 is qualified for c1.

Arbitrarily fix j = i, i + 1. Analogous reasoning to that in Case 1 establishes that

xj−1a1,c1
+dj−1a1

= 1; moreover, as xj−1a1,c2
≥ dj−1a1

, Lemma A.14 implies that xja1,c2−d
j−1
a1

. It follows

that xj−1a1,c1
+ xja1,c2 = 1. As analogous reasoning for c2 yields that xj−1a2,c2

+ xja2,c1 = 1, we have

xj−1a1,c1
+ xj−1a2,c2

+ xja1,c2 + xja2,c1 = 2. (26)

By Lemma A.9, xja1,c1 +
∑

a′∈Âa1,c1
xja′,c1 = qc1 ; moreover, as c1 does not allocate any

capacity to any agent with a lower priority than a1, we have
∑

a∈A x
j
a,c1

= qc1 . Analogous

reasoning for c2 yields
∑

a∈A x
j
a,c2

= qc2 ; hence it can be concluded that
∑

a∈A
∑

c∈C x
j
a,c = q.

By (25), the sum
∑

a∈A\{a1,a2}
∑

c∈C x
j
a,c is equal to either zero or a multiple of 0.5 (since

each element of the sum is either 0, 0.5, or 1). As q is by definition an integer, it follows that

xja1,c1 +xja2,c2 +xja1,c2 +xja2,c1 is a multiple of 0.5. As xja1,c1 < dja1 and xja2,c2 < dja2 , Lemma A.13

implies that xj−1a1,c1
≤ xja1,c1 and xj−1a2,c2

≤ xja2,c2 . By (26), it follows that

xja1,c1 + xja2,c2 + xja1,c2 + xja2,c1 ∈ {2, 2.5, . . .}. (27)

If xj−1a1,c1
= xja1,c1 and xj−1a2,c2

= xja2,c2 , then xja1,c1 + xja1,c2 = 1 + xja2,c2 + xja2,c1 = 1. Then, (25)

implies that xj is an allocation, which by Lemma A.12 implies that xi+1 is an allocation and

completes the proof.

If either xj−1a1,c1
< xja1,c1 or xj−1a2,c2

< xja2,c2 , then (26) and (27) imply that (xja1,c1 + xja2,c2)−
(xj−1a1,c1

+ xj−1a2,c2
) ≥ 0.5. As j was picked arbitrarily, it follows that (xi+1

a1,c1
+ xi+1

a2,c2
)− (xi−1a1,c1

+

xi−1a2,c2
) ≥ 1. Then, it can be concluded that xi+1

a1,c1
+ xi+1

a2,c2
≥ 1; hence either xi+1

a1,c1
≥ 0.5

or xi+1
a2,c2
≥ 0.5. If xi+1

a1,c1
≥ 0.5, then analogous reasoning to that in Case 1 establishes that

xi+1
a1,c1

+ di+1
a1

= 1 so di+1
a1
≤ 0.5 ≤ xi+1

a1,c1
, which contradicts the assumption that a1 is marginal

for c1 in Round i+1. Assuming that xi+1
a2,c2
≥ 0.5 analogously implies that di+1

a2
≤ 0.5 ≤ xi+1

a2,c2
,

which contradicts the assumption that a2 is marginal for c2 in Round i+ 1.

If the SR algorithm finds an allocation in one of the 8|A| − 2 first rounds, the proof is

complete; therefore I focus on the case in which the SR algorithm has not found an allocation

after 8|A| − 2 rounds and show that, in that case, the SR algorithm finds an allocation in

Round 8|A| − 1. In Round 1, at least one unit is allocated (since q ≥ 1) so either an agent

becomes qualified for a category or one agent becomes marginal for each category. It follows

that at most 4|A| − 2 status changes occur after Round 1. By Claim 1, at least one status

changes every two rounds; therefore, in Round 8|A| − 3, every agent is qualified for every
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category. Then, by Claim 1, the SR algorithm finds an allocation in Round 8|A| − 1.

Proof of Theorem 2

By Lemma A.10, ξi complies with eligibility requirements and respects priorities and xi

satisfies all four properties in every Round i, and by Corollary 1, ξSR = limi→∞ ξ
i = limi→∞ x

i.

I use those two results to show that ξSR satisfies all four properties.

(ξSR complies with eligibility requirements) For every agent a. every category c for which a

is not eligible, and every Round i, as xi complies with eligibility requirements we have xia,c = 0

for all i ≥ 1. It follows that ξSRa,c = limi→∞ x
i
a,c = 0.

(ξSR is nonwasteful) Consider any category c such that
∑

a∈A ξ
SR
a,c < qc and any agent a

who is eligible for c. It needs to be shown that ξSRa ≥ 1. As
∑

a∈A ξ
SR
a,c < qc, it must be that

limi→∞
∑

a∈A x
i
a,c < qc; hence there exists a Round j such that, for all i ≥ j,

∑
a∈A x

i
a,c < qc.

As xi is nonwasteful and a is eligible for c,we have xia ≥ 1. Then, xSRa = limi→∞ x
i
a ≥ 1.

(ξSR respects priorities) Arbitrarily fix an agent a such that ξSRa < 1, a category c, and a

lower-priority agent a′ ∈ Ǎa,c. It needs to be shown that ξSRa′,c = 0. By Lemma A.4, for every

Round i, ξia ≤ ξSRa < 1. As ξi respects priorities, it follows that ξia′,c = 0 for all i ≥ 1; hence

we have ξSRa′,c = limi→∞ ξ
i
a′,c = 0.

(ξSR is category neutral) Consider an agent a and a category c such that a is eligible for c

and ξSRa,c < maxc′∈C{ξSRa,c′}. It needs to be shown that ξSRa,c +
∑

a′∈Âa,c
ξSRa′,c = qc. By assumption,

we have limi→∞ x
i
a,c < limi→∞maxc′∈C{xia,c′}. Then, there exists a Round j such that, for all

i ≥ j, xia,c < maxc′∈C{xia,c′}. For every i ≥ j, xi is nonwasteful; hence xia,c+
∑

a′∈Âa,c
xia′,c = qc

for all i ≥ j. We can then conclude that ξSRa,c +
∑

a′∈Âa,c
ξSRa′,c = limi→∞(xia,c +

∑
a′∈Âa,c

xia′,c) =

qc.

Proof of Theorem 3

Let ξ∗ be an allocation that satisfies Axioms 1-4; it needs to be shown that ξ∗a = ξSRa for every

agent a. Toward a contradiction, suppose to the contrary that ξ∗ã 6= ξSRã for some agent ã.

Lemma A.15 implies that ξ∗a ≥ ξia for every agent a and every Round i; therefore, for every

agent a, we have ξ∗a ≥ limi→∞ ξ
i
a = ξSRa . It follows that ξ∗ã > ξSRã and, for every agent a 6= ã,

ξ∗a ≥ ξSRa ; hence we have |ξ∗| > |ξSR|. Consequently, there must exist a category c such that∑
a∈A

ξ∗a,c >
∑
a∈A

ξSRa,c . (28)

By definition (as ξ∗ is an allocation),
∑

a∈A ξ
∗
a,c ≤ qc; hence (28) implies that

∑
a∈A ξ

SR
a,c <

qc. By Corollary 1, limi→∞
∑

a∈A x
i
a,c < qc; therefore, there exists a Round j such that
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∑
a∈A x

i
a,c < qc for every i ≥ j. Then, by Lemma A.9, for every agent a who is eligible for c,

we have xia,c = di−1a . By definition, ξia,c = min{dia, xia,c} = min{dia, di−1a } so, by Lemma A.4,

ξia,c = dia. As ξ∗a,c ≤ dia by Lemma A.15, we have ξ∗a,c ≤ ξia,c. Moreover, for any agent a

who is not eligible for c, ξia,c = 0 by definition and ξ∗a,c = 0 as ξ∗ complies with eligibility

requirements. Therefore, we can conclude that ξ∗a,c ≤ ξia,c for every Round i ≥ j and every

agent a. Then, for every agent a, ξ∗a,c ≤ limi→∞ ξ
i
a,c = ξSRa,c , which contradicts (28).

Proof of Proposition 4

Let there be three agents a1, a2, and a3 as well as two categories c1 and c2. For each of

the four axioms, I construct quotas and priorities such that an allocation that is not SR

equivalent satisfies the other three axioms.

(Complies with eligibility requirements) Let the quotas and priorities be

qc1 = 2 qc2 = 1 πc1 : a1, ∅, a3, a2 πc2 : a2, ∅, a3, a1.

The SR algorithm finds the SR allocation after just one round: each category allocates one

unit of capacity to its highest-priority agent, respectively a1 and a2. Hence, we have

ξSR =


c1 c2

a1 1 0

a2 0 1

a3 0 0

 and ρSR =
( a1 a2 a3

1 1 0
)
.

Consider the alternative allocation

ξ =


c1 c2

a1 1 0

a2 0 1

a3 1 0

 with ρ(ξ) =
( a1 a2 a3

1 1 1
)
.

The allocation ξ is not SR equivalent since ρ(ξ) 6= ρSR. However, ξ is nonwasteful since the

amount of capacity allocated by each category is equal to its quota, ξ respects priority since

every agent is allocated one unit, and ξ is category neutral since, for every agent-object pair

(a, c) such that a is eligible for c, we have ξa,c = maxc′∈C{ξa,c′} (there are two such pairs,

(a1, c1) and (a2, c2), and ξa1,c1 = ξa2,c2 = 1).
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(nonwasteful) Let the quotas and priorities be

qc1 = 2 qc2 = 1 πc1 : a1, a3, ∅, a2 πc2 : a2, ∅, a3, a1.

The SR algorithm finds the SR allocation after just one round: c1 allocates its two units to its

two highest-priority agents—a1 and a3—and c2 allocates its unique unit to its highest-priority

agent—a2. Hence, we have

ξSR =


c1 c2

a1 1 0

a2 0 1

a3 1 0

 and ρSR =
( a1 a2 a3

1 1 1
)
.

Consider the alternative allocation

ξ =


c1 c2

a1 1 0

a2 0 1

a3 0 0

 with ρ(ξ) =
( a1 a2 a3

1 1 0
)
.

The allocation ξ is not SR equivalent since ρ(ξ) 6= ρSR. However, ξ complies with eligibility

requirements since agents only receive capacity from categories for which they are eligible, ξ

respects priorities as a3 is the only agent who is not allocated one unit in aggregate and every

agent with a lower priority than a3 at either category is allocated 0 from that category, and

a3 is category neutral as a1 is not eligible for c2, a2 is not eligible for c1, and ξa3,c1 = ξa3,c2 .

(Respects priorities) Let the quotas and priorities be

qc1 = 1 qc2 = 1 πc1 : a1, a3, a2, ∅ πc2 : a1, a2, a3, ∅.

The SR algorithm finds the SR allocation after two rounds. In Round 1, both categories

allocate one unit to a1, which has the highest-priority for both categories. Therefore, a1’s

demand decreases to 1/2 and in Round 2 each category allocates half a unit to its second

highest-priority agent, respectively a3 and a2. Hence, we have

ξSR =


c1 c2

a1 1/2 1/2

a2 0 1/2

a3 1/2 0

 and ρSR =
( a1 a2 a3

1 1/2 1/2
)
.
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Consider the alternative allocation

ξ =


c1 c2

a1 0 0

a2 1/2 1/2

a3 1/2 1/2

 with ρ(ξ) =
( a1 a2 a3

0 1 1
)
.

The allocation ξ is not SR equivalent since ρ(ξ) 6= ρSR. However, ξ complies with eligibility

requirements as agents only receive capacity from categories for which they are eligible, ξ

is nonwasteful as each category allocates overall an amount of capacity equal to its quota,

and ξ is category neutral as each agent is allocated the same amount of capacity from both

categories.

(Category neutrality) Let the quotas and priorities be identical to the previous example:

qc1 = qc2 = 1, πc1 : a1, a3, a2, ∅ and πc2 : a1, a2, a3, ∅. We have again that

ξSR =


c1 c2

a1 1/2 1/2

a2 0 1/2

a3 1/2 0

 and ρSR =
( a1 a2 a3

1 1/2 1/2
)
.

Consider the alternative allocation

ξ =


c1 c2

a1 1 0

a2 0 0

a3 0 1

 with ρ(ξ) =
( a1 a2 a3

1 0 1
)
.

The allocation ξ is not SR equivalent since ρ(ξ) 6= ρSR. However, ξ complies with eligibility

requirements as agents only receive capacity from categories for which they are eligible, ξ is

nonwasteful as each category allocates overall an amount of capacity equal to its quota, and

ξ respects priorities as a2 is the only agent not to be allocated one unit in aggregate and has

a lower priority than a1 for c1 and a lower priority than a2 for c2.

Proof of Theorem 4

It needs to be shown that da(ξ
∗) ≤ da(ξ

SR) for every agent a and da(ξ
∗) < da(ξ

SR) for some

agent a. I prove each of the two statements separately.

(da(ξ
∗) ≤ da(ξ

SR) for every agent a) Consider any agent a. If ξSRa < 1, then by definition
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da(ξ
∗) ≤ 1 = da(ξ

SR). If ξSRa = 1, then ξ∗a = 1 by Theorem 3. Therefore, by definition we

have da(ξ
∗) = maxc∈C{ξ∗a,c} and da(ξ

SR) = maxc∈C{ξSRa,c }. By Lemma A.16, it follows that

da(ξ
∗) = maxc∈C{ξ∗a,c} ≤ maxc∈C{ξSRa,c } = da(ξ

SR).

(da(ξ
∗) < da(ξ

SR) for some agent a) As ξ∗ 6= ξSR, there exists an agent a and a category c

such that ξ∗a,c 6= ξSRa,c . By Theorem 3, ξ∗a = ξSRa so ξ∗a,c > ξSRa,c implies that ξ∗a,c̃ < ξSRa,c̃ for some

category c̃. Therefore, without loss of generality, I assume that

ξ∗a,c < ξSRa,c (29)

and show that da(ξ
∗) ≤ da(ξ

SR).

First, observe that (29) implies that a is eligible for c; otherwise, as ξ∗ and ξSR comply

with eligibility requirements, we would have that ξ∗a,c = ξSRa,c = 0. Second, I show the following

intermediate result:

Claim 2.
∑

a′∈Âa,c
ξ∗a,c ≤

∑
a′∈Âa,c

ξSRa,c .

Proof. Suppose to the contrary that
∑

a′∈Âa,c
ξ∗a,c >

∑
a′∈Âa,c

ξSRa,c . Then, there exists an agent

ã ∈ Âa,c such that ξ∗ã,c > ξSRã,c . As ξSR is an allocation, by definition
∑

a′∈A ξ
SR
a′,c ≤ qc and, by

(29), ξSRa,c > 0; therefore, as ãπca, it can be concluded that ξSRã,c +
∑

a′∈Âã,c
ξSRa′,c < qc. As ξSR

is category neutral and ã is eligible for c (since a is eligible for c and ã has a higher priority),

it follows that ξSRã,c = maxc′∈C{ξSRã,c′}. Then, the fact that ξ∗ã,c > ξSRã,c implies that

max
c′∈C
{ξ∗ã,c′} ≥ ξ∗ã,c > ξSRã,c = max

c′∈C
{ξSRã,c′},

which contradicts Lemma A.16.

Having established Claim 2, I now use it to show that da(ξ
∗) ≤ da(ξ

SR). I consider

separately the cases in which ξSRa < 1 and ξSRa = 1.

Case 1 : ξSRa < 1. In that case, by Theorem 3, ξ∗a = ξSRa < 1. As ξ∗ and ξSR are

nonwasteful, ξ∗a = ξSRa < 1, and a is eligible for c, we have
∑

a∈A ξ
∗
a,c =

∑
a∈A ξ

SR
a,c = qc.

Moreover, as ξ∗ and ξSR respect priorities and ξ∗a = ξSRa < 1, we have ξ∗a′,c = ξSRa′,c = 0 for

every lower-priority agent a′ ∈ Ǎa,c. It follows that

ξ∗a,c +
∑

a′∈Âa,c

ξ∗a,c = ξSRa,c +
∑

a′∈Âa,c

ξSRa,c = qc.

Then, (29) implies that
∑

a′∈Âa,c
ξ∗a,c >

∑
a′∈Âa,c

ξSRa,c , which contradicts Claim 2. Therefore,

we must be in Case 2.
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Case 2 : ξSRa = 1. In that case, by Theorem 3, ξ∗a = ξSRa = 1. I consider separately two

subcases: ξ∗a,c < maxc′∈C{ξ∗a,c′} and ξ∗a,c = maxc′∈C{ξ∗a,c′}.
Subcase 2.1 : ξ∗a,c < maxc′∈C{ξ∗a,c′}. As ξ∗ is category neutral and a is eligible for c, we have

ξ∗a,c +
∑

a′∈Âa,c
ξ∗a′,c = qc. Moreover, as ξSR is an allocation, we have ξSRa,c +

∑
a′∈Âa,c

ξSRa′,c ≤ qc.

Then, (29) implies that
∑

a′∈Âa,c
ξ∗a,c >

∑
a′∈Âa,c

ξSRa,c , which contradicts Claim 2. Therefore,

we must be in Subcase 2.2.

Subcase 2.2 : ξ∗a,c = maxc′∈C{ξ∗a,c′}. As ξ∗a = ξSRa = 1, by definition we have da(ξ
∗) =

maxc′∈C{da(ξ∗)} and da(ξ
SR) = maxc′∈C{da(ξSR)}. Using those two results in conjunction

with the subcase assumption and (29) yields

da(ξ
∗) = max

c′∈C
{ξ∗a,c′} = ξ∗a,c < ξSRa,c ≤ max

c′∈C
{ξSRa,c′} = da(ξ

SR);

hence, it can be concluded that da(ξ
∗) ≤ da(ξ

SR), as required.

Proof of Proposition 5

Let A∗ = {a ∈ A : ξSRa ∈ (0, 1)} be the set of agents who are allocated an amount of

capacity strictly between zero and one at the SR aggregate allocation. It needs to be shown

that |A∗| ≤ |C|. Suppose toward a contradiction that |A∗| > |C|. At the SR allocation,

every agent in A∗ must be allocated a positive amount of capacity by at least one category

(otherwise that agent would not be allocated any capacity in aggregate and would therefore

not be an element of A∗). Then, the assumption that |A∗| > |C| implies that there exists a

category that allocates a positive amount of capacity to at least two agents. That is, there

exist a category c and two agents a1, a2 ∈ A∗ with a1πca2 such that ξSRa1,c > 0 and ξSRa2,c > 0.

As ξSRa1 < 1, ξSR does not respect priorities, which contradicts Theorem 2.

C Properties of the SRLP Algorithm

Lemma C.1. For every Round i ≥ 1, ξi is an allocation and, for every agent a, ξia =

min{xia, 1}.

Proof. Lemma C.1 is a counterpart to Lemma A.3 for the SRLP algorithm and its proof is

completely analogous to that of Lemma A.3.

Lemma C.2. For every Round i of the SRLP algorithm and every agent a, we have

dia =

{
1 if ξia < 1

maxc∈C{ξia,c} if ξia = 1.
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and ξia = 1 if and only if there exists a category c such that ξia,c = dia.

Proof. Lemma C.2 is a counterpart to Lemmas A.5 and A.6 for the SRLP algorithm and its

proof is completely analogous to those of Lemmas A.5 and A.6.

Lemma C.3. For every Round i of the SRLP algorithm and every agent a, ξia ≥ ξi−1a and

dia ≤ δia ≤ di−1a .

Proof. Lemma C.3 is a counterpart to Lemma A.4 for the SRLP algorithm. By an analogous

reasoning to that of Lemma A.4, the statement holds for Round 1: ξ1a ≥ ξ0a and d1a ≤ d0a.

The remainder of the proof is by induction. For some i ≥ 2, suppose that ξi−1a ≥ ξi−2a and

di−1a ≤ di−2a for all a ∈ A (induction hypothesis). I show that ξia ≥ ξi−1a and dia ≤ di−1a . The

part that differs form the proof of Lemma A.4 is that one needs to show that δia ≤ di−1a . The

result is obtained directly if the SRLP algorithm does not use linear programming in Round i

since, in that case, δia = di−1a . If the SRLP does use linear programming, then δia = di−1a for

every a /∈ Ã so I focus on the case in which a ∈ Ã. As shown in the proof of Lemma D.1,

the vector (ξi−1a(c),c)c∈C̃ satisfies the constraints of the linear program (LP 1); therefore, the

vector (ξi−1a,c )c∈CM (a) satisfies the constraints of the linear program (LP 3). Let (ξ∗a(c),c)c∈C̃ be

the solution to the linear program (LP 1); then, the vector (ξ∗a,c)c∈CM (a) is the solution to the

linear program (LP 3). It follows that
∑

c∈CM (a) ξ
i−1
a ≤

∑
c∈CM (a) ξ

∗
a. By construction,

|CQ(a)|di−1a +
∑

c∈CM (a)

ξi−1a,c = |CQ(a)|δia +
∑

c∈CM (a)

ξ∗a,c = 1;

hence it can be concluded that δia ≤ di−1a . As the SRLP algorithm constructs ξi from δi as

well as di and ξi from xi identically to the SR algorithm, analogous reasoning to that in the

proof of Lemma A.4 implies that ξia ≥ ξi−1a and dia ≤ δia.

Lemma C.4. For every Round i of the SRLP algorithm, every agent a, and every category c,

either xia,c < δia or ξia,c < dia implies that xia′,c = ξia′,c = 0 for every lower-priority agent

a′ ∈ Ǎa,c.

Proof. Lemma C.4 is a counterpart to Lemma A.7 for the SRLP algorithm. The proof is

completely analogous to that of Lemma A.9, the only difference is that di−1a needs to be

replaced throughout by δia.

Lemma C.5. For every agent a and category c such that a is eligible for c, and for every

Round i, xia,c < δia implies that xia,c +
∑

a′∈Âa,c
xia′,c = qc.

Proof. Lemma C.5 is a counterpart to Lemma A.9 for the SRLP algorithm. The proof is

completely analogous to that of Lemma A.9, the only difference is that di−1a needs to be

replaced throughout by δia.
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Lemma C.6. Suppose that, for some agent a, some category c, and some Round i ≥ 1 of

the SRLP algorithm, xia,c < dia. Then, for every j ≤ i, xja,c ≤ xia,c < dja.

Proof. Lemma C.6 is a counterpart to Lemma A.13 for the SRLP algorithm. The proof is

completely analogous to that of Lemma A.13, the only difference is that Lemma C.3 needs

to be used instead of Lemma A.4.

Lemma C.7. Suppose that, for some agent a, some category c and some Round i ≥ 1 of the

SRLP algorithm, xia,c ≥ dia. Then, for every j > i, xja,c = dj−1a ≥ dja.

Proof. Lemma C.7 is a counterpart to Lemma A.14 for the SRLP algorithm. The proof is

completely analogous to that of Lemma A.14, the only difference is that Lemma C.3 needs

to be used instead of Lemma A.4.

D Proof of Theorem 5

I present an argument to establish Theorem 5 that relies on four lemmas, whose proof can

be found immediately after this proof. The first lemma establishes that the output of Algo-

rithm 3 is well defined.

Lemma D.1. The linear program (LP 1) in Algorithm 3 has a unique solution.

Lemma D.1 ensures that each Round i ≥ 1 of the SRLP algorithm, δi, xi, and di are

well defined. The next step is to show that, unlike the SR algorithm, the SRLP algorithm

eventually terminates.

Lemma D.2. The SRLP algorithm ends after fewer than 4|A||C| rounds.

Lemma D.2 guarantees that the SRLP algorithm produces an allocation in finitely many

rounds. Letting N < 4|A||C| be the number of rounds after which the SRLP algorithm ends,

the outcome of the SRLP algorithm is then the allocation xN . (By construction, xN

must be an allocation, otherwise the SRLP algorithm would not end in Round N .) The next

result ensures that the outcome of the SRLP algorithm satisfies all four axioms.

Lemma D.3. In every Round i of the SRLP algorithm, xi satisfies Axioms 1-4.

Lemmas D.1-D.3 imply that, after N < 4|A||C| rounds, the SRLP algorithm produces

an allocation xN that satisfies Axioms 1-4. Then, by Theorem 3, the outcome of the SRLP

algorithm is SR equivalent. That is, the outcomes of the SR and SRLP algorithms yield the

same aggregate allocation. However, there may be multiple allocations satisfying Axioms 1-4

so the last step is to show that xN is indeed the SR allocation.

56



Lemma D.4. xN = ξSR.

Combining Lemmas D.2 and D.4 completes the proof.

Proof of Lemma D.1

I first show that (LP 1) has a solution and then proceed to showing that there cannot be

multiple solutions. For the first part of the proof, I show that the previous round alloca-

tion ξi−1 satisfies all 2|C̃| constraints, which guarantees that the (LP 1) has a solution. That

is, I show that, for every c ∈ C̃,

ξi−1a(c),c ≤
1−

∑
c′∈CM (a(c))\{c} ξ

i−1
a(c),c′

|CQ(a(c))|+ 1
(30)

and ξi−1a(c),c ≤ q̃c −
∑

a∈ÃQ(c)

1−
∑

c′∈CM (a) ξ
i−1
a,c′

|CQ(a)|
. (31)

Arbitrarily fix an agent a ∈ Ã. By construction, a is qualified for at least one category in

Round i− 1 so, by Lemma A.6, ξi−1a = 1. It follows that
∑

c∈CQ(a) ξ
i−1
a,c +

∑
c∈CM (a) ξ

i−1
a,c = 1.

As ξi−1a,c = da for every c ∈ CQ(a) by definition, we have da = (1 −
∑

c∈CM (a) ξa,c)/|CQ(a)|.
Moreover, again by definition, we have ξi−1a,c ≤ da for every c ∈ CM(a). As a was chosen

arbitrarily, it follows that

ξi−1a,c ≤
1−

∑
c∈CM (a) ξ

i−1
a,c

|CQ(a)|
for every a ∈ Ã and every c ∈ CM(a),

which by construction is equivalent to

ξi−1a(c),c ≤
1−

∑
c′∈CM (a(c)) ξ

i−1
a(c),c′

|CQ(a(c))|
for every c ∈ C̃.

Through simple algebra (as c ∈ CM(a(c)), ξi−1a(c),c can be moved out of the sum and to the

left-hand side), it follows that the last inequality is equivalent to (30).

To show that (31) holds, arbitrarily fix a category c ∈ C̃. As ξi−1 is an allocation

(by Lemma A.3), we have ξa(c),c +
∑

a∈AQ(c) ξ
i−1
a,c ≤ qc. By definition, ξi−1a,c = da for every

a ∈ AQ(c); hence it follows that ξa(c),c+
∑

a∈AQ(c) da ≤ qc, which by definition is equivalent to

ξa(c),c+
∑

a∈ÃQ(c) da ≤ q̃c. Moreover, for every a ∈ AQ(c), we have |CQ(a)|da+
∑

c′∈CM (a) ξ
i−1
a,c =
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1 so da = (1−
∑

c′∈CM (a) ξ
i−1
a,c′ )/|CQ(a)|. It follows that

ξi−1a(c),c +
∑

a∈ÃQ(c)

1−
∑

c′∈CM (a) ξ
i−1
a,c′

|CQ(a)|
≤ q̃c,

which is equivalent to (31).

Having established that the linear program in Algorithm 3 has a solution, I now show that

the solution is unique. I being by introducing some notation that will be useful throughout

the proof. Given a vector (ξa(c),c)c∈C̃ , for every agent a ∈ Ã let Sa =
∑

c∈CM (a) ξa,c. Arbitrarily

fix an agent a ∈ Ã and a vector S−a = (Sa′)a′∈Ã\{a}. For every c ∈ CM(a), let

θa,c = q̃c −
∑

a∈ÃQ(c)

1−
∑

c′∈CM (a) ξa,c′

|CQ(a)|
= q̃c −

∑
a∈ÃQ(c)

1− Sa′
|CQ(a)|

. (32)

Note that θa,c is the right-hand side of the second constraint of the linear program (LP 3)

and is fixed by S−a. Label the categories for which a is marginal such that CM(a) =

{c1, c2, . . . , c|CM (a)|} with θa,c1 ≥ θa,c2 ≥ . . . ≥ θa,c|CM (a)| . For every i = 1, . . . , |CM(a)|,
let

Ti =
1−

∑
j>i θa,cj

|CQ(a)|+ i
. (33)

Finally, define the number n = 0, 1, . . . , |CQ(a)| as follows. If Ti > θa,ci for every i =

1, . . . , |CM(a)|, then n = 0. Otherwise, n is the largest number i = 1, . . . , |CM(a)| such that

Ti ≤ θa,ci ; that is, Tn ≤ θa,cn and Ti > θa,ci for all i > n. Having introduced the required

notation, I next introduce the first intermediate result.

Claim 3. For every i ≥ n, Ti > Ti+1.

Proof. It needs to be shown that

1−
∑

j>i θa,cj
|CQ(a)|+ i

>
1−

∑
j>i+1 θa,cj

|CQ(a)|+ i+ 1
,
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which is equivalent to

|CQ(a)|+ i+ 1− (|CQ(a)|+ i+ 1)
∑
j>i

θa,cj > |CQ(a)|+ i− (|CQ(a)|+ i)
∑
j>i+1

θa,cj

⇔ 1 + (|CQ(a)|+ i)
∑
j>i+1

θa,cj > (|CQ(a)|+ i+ 1)
∑
j>i

θa,cj

⇔ 1 > (|CQ(a)|+ i+ 1)θa,ci+1
+
∑
j>i+1

θa,cj

⇔ θa,ci+1
<

1−
∑

j>i+1 θa,cj
(|CQ(a)|+ i+ 1)

.

The right-hand side of the last inequality is equal to Ti+1; therefore, Ti > Ti+1 is equivalent

to θa,ci+1
< Ti+1, which is satisfied by the definition of n since, by assumption, i+ 1 > n.

Next, arbitrarily fix a vector (yi)i>n such that yi ≤ θa,ci for every i > n and consider the

following linear program:

max
(ξa,ci )

|CM (a)|
i=1

|CM (a)|∑
i=1

ξa,ci

subject to (i) ξa,ci ≤
1−

∑
j 6=i ξa,cj

|CQ(a)|+ 1
for every i = 1, . . . , |CM(a)|

and (ii) ξa,ci = yi for every i > n.

(LP 2)

The linear program (LP 2) can be interpreted as follows. For every i > n, ξa,ci is set to yi so

only the first n elements (ξa,ci for i ≤ n) have to be chosen to maximized the sum, subject

to constraint (i).

Claim 4. For any vector (yi)i>n ≤ (θa,ci)i>n, the unique solution to the linear program (LP 2)

is the vector (ξ∗a,ci)
|CM (a)|
i=1 such that

ξ∗a,ci =

{
1−

∑
j>n yj

|CQ(a)|+n if i ≤ n

yi if i > n.

Proof. I first show that (ξ∗a,ci)
|CM (a)|
i=1 satisfies all constraints. Constraint (ii) is satisfied for all

i > n by definition; hence I focus on constraint (i).

Case 1 : i ≤ n. It needs to be shown that

1−
∑

j>n yj

|CQ(a)|+ n
≤

1−
∑

j 6=i ξ
∗
a,cj

|CQ(a)|+ 1
. (34)
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By definition, we have

1−
∑
j 6=i

ξ∗a,cj = 1− (n− 1)
1−

∑
j>n yj

|CQ(a)|+ n
−
∑
j>n

yj =
(|CQ(a)|+ 1)(1−

∑
j>n yj)

|CQ(a)|+ n
.

Therefore, the right-hand side of (34) is equal to (1−
∑

j>n yj)/(|CQ(a)|+ n) and (34) holds

with an equality.

Case 2 : i > n. It needs to be shown that

ξ∗a,ci ≤
1−

∑
j 6=i ξ

∗
a,cj

|CQ(a)|+ 1
,

which is equivalent to

|CQ(a)|ξ∗a,ci ≤ 1−
|CM (a)|∑
j=1

ξ∗a,cj . (35)

By the definition of (ξa,ci)
|CM (a)|
i=1 , (35) is equivalent to

|CQ(a)|yi ≤ 1− n
1−

∑
j>n yj

|CQ(a)|+ n
−
∑
j>n

yj

yi ≤
1−

∑
j>n yj

|CQ(a)|+ n
(36)

As yi ≤ θa,ci by definition, θa,ci < Ti by the definition of n, Ti < Tn by Claim 3, and Tn is

equal to the right-hand side of (35), it can be concluded that (35) holds.

Having shown that the vector (ξ∗a,ci)
|CM (a)|
i=1 satisfies all constraints, I proceed to show

that it maximizes the objective, which makes it a solution to (LP 2). Consider any vector

(ξa,ci)
|CM (a)|
i=1 that satisfies constraints (i) and (ii); I show that

∑CM (A)
i=1 ξa,ci ≤

∑CM (A)
i=1 ξ∗a,ci .

Constraint (i) implies that, for every i ≤ n,

|CQ(a)|ξa,ci ≤ 1−
|CM (a)|∑
j=1

ξa,cj .
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Summing up over all i ≤ n yields

∑
i≤n

|CQ(a)|ξa,ci ≤
∑
i≤n

(1−
|CM (a)|∑
j=1

ξa,cj)

⇔ |CQ(a)|
∑
i≤n

ξa,ci ≤ n− n
|CM (a)|∑
i=1

ξa,ci

⇔ (|CQ(a)|+ n)
∑
i≤n

ξa,ci ≤ n− n
∑
i>n

ξa,ci

⇔
∑
i≤n

ξa,ci ≤ n
1−

∑
i>n ξa,ci

|CQ(a)|+ n

⇔
|CM (a)|∑
i=1

ξa,ci ≤ n
1−

∑
i>n ξa,ci

|CQ(a)|+ n
+
∑
i>n

ξa,ci .

As constraint (ii) holds for every i > n, we obtain

|CM (a)|∑
i=1

ξa,ci ≤ n
1−

∑
i>n yi

|CQ(a)|+ n
+
∑
i>n

yi. (37)

By definition, we have
|CM (a)|∑
i=1

ξ∗a,ci = n
1−

∑
j>n yj

|CQ(a)|+ n
+
∑
j>n

yj,

which combined with (37) implies that
∑CM (A)

i=1 ξa,ci ≤
∑CM (A)

i=1 ξ∗a,ci .

Having shown that is a solution to the linear program (LP 2), I finally show that it is

the unique solution. Let (ξ]a,ci)
|CM (a)
i=1 be a solution to (LP 2), it needs to be shown that

(ξ]a,ci)
|CM (a)
i=1 = (ξ∗a,ci)

|CM (a)
i=1 . As (ξ]a,ci)

|CM (a)
i=1 is a solution to (LP 2), it maximizes the objective

so
|CM (a)|∑
i=1

ξ]a,ci =

|CM (a)|∑
i=1

ξ∗a,ci = n
1−

∑
j>n yj

|CQ(a)|+ n
+
∑
j>n

yj.

Moreover, as (ξ]a,ci)
|CM (a)
i=1 satisfies constraint (i), for every i ≤ n, we have

|CQ(a)|ξ]a,ci ≤ 1−
|CM (a)|∑
j=1

ξ]a,cj .
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Therefore, it follows that, for every i ≤ n

|CQ(a)|ξ]a,ci ≤ 1− n
1−

∑
j>n yj

|CQ(a)|+ n
−
∑
j>n

yj

ξ]a,ci ≤
1−

∑
j>n yj

|CQ(a)|+ n
.

Then, by definition, it follows that ξ]a,ci ≤ ξ∗a,ci for every i ≤ n. As ξ]a,ci = ξ∗a,ci for all i > n (by

constraint (ii)) and
∑|CM (a)|

i=1 ξ]a,ci =
∑|CM (a)|

i=1 ξ∗a,ci (as both vectors maximize the objective),

we have (ξ]a,ci)
|CM (a)
i=1 = (ξ∗a,ci)

|CM (a)
i=1 .

I next use Claim 4 to find the solution to the following linear program.

max
(ξa,ci )

|CM (a)|
i=1

|CM (a)|∑
i=1

ξa,ci

subject to (i) ξa,ci ≤
1−

∑
j 6=i ξa,cj

|CQ(a)|+ 1

and (ii) ξa,ci ≤ θa,ci for every i = 1, . . . , |CM(a)|.

(LP 3)

The linear program (LP 3) can be thought of as the linear program (LP 1) from Algorithm 3

in which S−a has been fixed so it remains to choose the vector (ξa,ci)
|CM (a)|
i=1 to maximize Sa.

Claim 5. The unique solution to the linear program (LP 3) is the vector (ξ∗a,ci)
|CM (a)
i=1 such

that, for every i = 1, . . . , CM(a),

ξ∗a,ci =

{
Tn if i ≤ n

θa,ci if i > n.

Proof. By Claim 4, (ξ∗a,ci)
|CM (a)
i=1 satisfies constraint (i); otherwise the unique solution to (LP 2)

would not satisfy that linear program’s constraints. By definition, for every i ≤ n, ξ∗a,ci =

Tn ≤ θa,ci and, for every i > n, ξ∗a,ci = θa,ci ; hence (ξ∗a,ci)
|CM (a)
i=1 satisfies constraint (ii).

Having shown that (ξ∗a,ci)
|CM (a)
i=1 satisfies all constraints (which implies that (LP 3) has a

solution), I now show that it is the unique solution to (LP 3). Let (ξ]a,ci)
|CM (a)
i=1 be a solution

to (LP 3), I show that (ξ]a,ci)
|CM (a)
i=1 = (ξ∗a,ci)

|CM (a)
i=1 . By constraint (ii), ξ]a,ciθa,ci for every i > n;

therefore Claim 4 implies that, for every i ≤ n,

ξ]a,ci =
1−

∑
j>n ξ

]
a,cj

|CQ(a)|+ n
, (38)
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as otherwise (ξ]a,ci)
|CM (a)
i=1 would not be optimal. Then,

|CM (a)|∑
i=1

ξ]a,ci = n
1−

∑
i>n ξ

]
a,ci

|CQ(a)|+ n
+
∑
i>n

ξ]a,cj =
n+ |CQ(a)|

∑
i>n ξ

]
a,ci

|CQ(a)|+ n

so the objective is increasing in (ξ]a,ci)i>n; therefore, the unique maximizer is obtained by

setting ξ]a,ci = θa,ci for every i > n, which by (38) implies that ξ]a,ci = Tn for every i ≤ n. It

follows that (ξ]a,ci)
|CM (a)|
i=1 = (ξ∗a,ci)

|CM (a)|
i=1 .

I finally go back to the linear program (LP 1) in Algorithm 3 and use Claim 5 to show

that (LP 1) has a unique solution. For any agent a ∈ Ã and any S−a, let Sa(S−a) be the

maximized objective function of the linear program (LP 3); in words, Sa(S−a) is the largest

sum that can be reached for the elements involving agent a given S−a. If S−a increases, then

by (32), so does θa,c for every c ∈ CM(a). Therefore, constraint (ii) of the linear program

(LP 3) is relaxed, meaning that the largest sum that can be reached increases as well. It

follows that Sa(S−a) is increasing in S−a. Suppose toward a contradiction that (LP 1) has

two solutions giving two distinct sum vectors S∗ = (S∗a)a∈Ã and S] = (S]a)a∈Ã. Then, for

every a ∈ Ã, S∗a = Sa(S
∗
−a) and S]a = Sa(S

]
−a). Consider the sum vector S = (Sa)a∈Ã with

Sa = max{S∗a, S]a} for every a ∈ Ã. As S∗ and S] are distinct and derive from solutions of

(LP 1), it must be that
∑

a∈Ã Sa >
∑

a∈Ã S
∗
a =

∑
a∈Ã S

]
a; hence the allocation underpinning S

must violate some constraint of (LP 1). Consequently, there exists an agent a ∈ Ã such that

Sa > Sa(S−a). By definition, S−a ≥ S∗−a; hence, as Sa(S−a) is increasing in S−a, it follows

that Sa(S−a) ≥ Sa(S
∗
−a). As S∗a = Sa(S

∗
a), it can be concluded that Sa > S∗a. Analogous

reasoning yields that Sa > S]a so Sa > max{S∗a, S]a}, a contradiction.

The preceding reasoning implies that every solution to (LP 1) yields the same sum vector,

which I denote by S∗. By Claim 5, for every a ∈ Ã, there exists a unique vector (ξ∗a,c)c∈CM (a)

such that
∑

c∈CM (a) ξ
∗
a,c = S∗a = Sa(S

∗
−a). Therefore, the vector (ξ∗a,c)a∈Ã,c∈CM (a) = (ξ∗a(c),c)c∈C̃

is the unique solution to (LP 1).

Proof of Lemma D.2

Consider any Round i, any agent a and any category c. Suppose that a is qualified for c in

Round i, that is xia,c ≥ dia. By Lemma C.7, for every j > i, xja,c ≥ dja; therefore, a remains

qualified for c in every subsequent round. Suppose next that a is marginal for c in Round i,

that is 0 < xia,c < dia. By Lemma C.6, in any Round j > i, either xja,c ≥ xia,c or xja,c = dja.

In both cases, xja,c > 0; therefore, a is either marginal or qualified for c in every subsequent

round. It follows that throughout the SRLP algorithm, for every agent-object pair (a, c), a’s
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status for c changes at most twice: once from unqualified to marginal and once from marginal

to qualified.

Consider next a Round i in which the SRLP algorithm uses linear programming, i.e.,

δi = δLP (xi−1, di−1). I show that either the algorithm ends in Round i or there exists an

agent-object pair (a, c) such that a’s status for c changes in Round i. If xia ≤ 1 for every

agent a, the algorithm ends in Round i so the remainder of the argument focuses on the

case in which xia > 1 for some agent a. Suppose first that a was not qualified for any

category in Round i − 1. The assumption that xia > 1 implies by definition that ξia = 1

and by Lemma C.2 that ξia,c = dia for some category c. It follows that a’s status for c

has changed from either unqualified or marginal to qualified in Round i. Suppose next

that a was qualified for some categories but not qualified for any. Then, by assumption,

ξi−1a,c = di−1a for all c ∈ CQ(a) and ξi−1a,c = 0 for all c ∈ C \ CQ(a). By Lemma C.2, ξi−1a = 1

so |Ci−1
Q (a)|di−1a = 1. As a is not marginal for any category, a /∈ Ã in the LP algorithm;

hence δi = di−1. It follows that |Ci−1
Q (a)|δia = 1; moreover, by definition xia,c ≤ δia for every

category c so
∑

c∈Ci−1
Q (a) x

i
a,c ≤ 1. Then, the assumption that xia > 1 implies that there is a

category c such that xia,c > xi−1a,c = 0 so a’s status for c has changed in Round i from unqualified

to either marginal or qualified. Last, consider the remaining case in which a is qualified for

at least one category and marginal for at least one category. In that case, a ∈ Ã in the LP

algorithm so δi = δLP (xi−1, di−1). Let (ξa(c),c)c∈C̃ be the solution to the linear program (LP 1)

in the LP algorithm. By construction, for every c ∈ CM(a), ξ∗a,c = min{δia, q̃c−
∑

a′∈ÃQ(c) δ
i
a′};

otherwise, one constraint in (LP 1) would hold with a strict inequality and (ξa(c),c)c∈C̃ would

not be the solution to (LP 1). If ξ∗a,c = δia, then xia,c ≤ ξ∗a,c since xia,c ≤ δia by definition.

If ξ∗a,c = q̃c −
∑

a′∈ÃQ(c) δ
i
a′ , then, as q̃c = qc −

∑
a′∈AQ(c)\ÃQ(c) d

i−1
a′ and δia′ = di−1a′ for every

a′ ∈ AQ(c) \ ÃQ(c), we have ξ∗a,c = qc −
∑

a′∈AQ(c) δ
i
a′ . Moreover, as a is marginal for c,

AQ(c) = Âa,c so ξ∗a,c = qc−
∑

a′∈Âa,c
δia′ . Then, for every agent a′ ∈ Âa,c, δia′ +

∑
ã∈Âa′,c

δã < qc

so by definition xia′,c = δia′ for every a′ ∈ Âa,c. It follows that ξ∗a,c = qc −
∑

a′∈Âa,c
ξia′,c or,

equivalently, ξ∗a,c +
∑

a′∈Âa,c
ξia′,c = qc. As xa,c is a preallocation, x∗a,c +

∑
a′∈Âa,c

ξia′,c ≤ qc so it

can be concluded that ξ∗a,c ≤ ξ∗a,c. By construction, |CQ(a)|δia +
∑

c∈CM (a) ξ
∗
a,c = 1; therefore

the fact that xia,c ≤ ξ∗a,c for every c ∈ CM(a) implies that
∑

c∈CQ(a)∪CM (a) x
i
a,c ≤ 1. Then, the

assumption that xia > 1 implies that xia,c > 0 for some c ∈ CU(a) so a’s status for c changes

in Round i from unqualified to either marginal or qualified.

Having established that the status of each agent for each category changes at most twice

throughout the SRLP algorithm and that in every round in which the SRLP algorithm uses

linear programming the status of at least one agent for at least one category change, I am

now in a position to prove that the SRLP algorithm ends after fewer than 4|A||C| rounds.

In fact, I will show that 4|A||C|−2 is an upper bound for the number of rounds of the SRLP
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algorithm. First, suppose that fewer than two status changes occur in Round 1. In that case,

no agent is qualified for any category in Round 1, that is x1a,c < d1a for every agent-category

pair (a, c). Then, by Lemma C.2, ξ1a < 1 and d1a = 1 for every agent a. By definition, it

follows that x1a < 1 for every agent a so the SRLP algorithm ends in Round 1. Therefore,

if the SRLP algorithm lasts more than one round, then at least two changes of status occur

in Round 1. Suppose that, in some subsequent Round i > 1, no change of status occurs.

Then, by construction, the SRLP algorithm uses linear programming in Round i+ 1, which

guarantees that a change of status occurs in Round i+ 1. It follows that at least one change

of status occurs every second round. Then, by the end of Round 4|A||C|−3, 4|A||C| changes

of status must have occurred: 2 in Round 1 and 2|A||C| − 2 in the 4|A||C| − 4 subsequent

rounds. As the status of each agent for each category can change at most twice, it follows

that, at the end of Round 4|A||C| − 3, every agent is qualified for every category. Then,

ξ
4|A||C|−3
a,c = d

4|A||C|−3
a for every agent-category pair (a, c) so, by Lemma C.2, ξ

4|A||C|−3
a = 1 for

every agent a. It follows that d
4|A||C|−3
a = 1/|C| for every agent a. In Round 4|A||C| − 2, by

Lemma C.7, x
4|A||C|−2
a,c = d

4|A||C|−3
a = 1/|C| for every agent-object pair (a, c). Then, for every

agent a, x
4|A||C|−2
a =

∑
c∈C 1/|C| = 1 so the SRLP algorithm ends.

Proof of Lemma D.3

While not entirely analogous, the reasoning is very similar to the proof of Lemma A.10.

(Complies with eligibility requirements) By definition, if an agent a is not eligible for a

category c, then xia,c = 0.

(nonwasteful) Consider any category c such that
∑

a∈A x
i
a,c < qc and any agent a who is

eligible for c. It needs to be shown that xia ≥ 1.

Case 1 : xia,c = δia. By the case assumption and Lemma C.3, xia,c = δia ≥ dia; hence, by

definition, ξia,c = min{dia, xia,c} = dia. By Lemma C.2, it follows that ξia = 1 so, by definition,

xia ≥ ξia = 1.

Case 2 : xia,c < δia. In that case, Lemma C.5 applies and yields xia,c +
∑

a′∈Âa,c
xia′,c = qc.

Then, we have
∑

a∈A x
i
a,c ≥ xia,c +

∑
a′∈Âa,c

xia′,c = qc, which contradicts the assumption that∑
a∈A x

i
a,c < qc.

(Respects priorities) Consider an agent a such that ξia < 1 and arbitrarily fix a category c

and a lower-priority agent a′ ∈ Ǎa,c. It needs to be shown that xia′,c = 0. By Lemma C.2, the

assumption that ξia < 1 implies that ξia,c < dia so, by Lemma C.4, ξia′,c = 0.

(Category neutrality) Consider any agent a and any category c such that a is eligible

for c and xia,c < maxc′∈C{xa,c′}. It needs to be shown that xia,c +
∑

a′∈Âa,c
xa′,c = qc. By

definition, maxc′∈C{xia,c′} ≤ δia; hence we have xia,c < δia. Then, by Lemma C.5, we have

xia,c +
∑

a′∈Âa,c
xia′,c = qc.
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Proof of Lemma D.4

Consider the allocation ξSR produced by the SR algorithm and the associated demand vector

d(ξSR). By definition, for every agent a, da(ξ
SR) = 1 if ξSRa < 1 and da(ξ

SR) = maxc∈C{ξa,c}
if ξSRa = 1. For every category c, it is possible to identify the agents who are qualified,

marginal, and unqualified for c at the allocation ξSR. For every category c, I denote by

ASRQ (c) = {a ∈ A : ξSRa,c = da(ξ
SR)} the set of agents who are qualified for c at ξSR, by

ASRM (c) = {a ∈ A : ξSRa,c ∈ (0, da(ξ
SR))} the set of agents who are marginal for c at ξSR, and

by ASRU (c) = {a ∈ A : ξSRa,c = 0} the set of agents who are unqualified for a at ξSR. Similarly,

for every agent a, I denote by CSR
Q (a) = {c ∈ C : ξSRa,c = da(ξ

SR)} the set of categories for

which a is qualified, by CSR
M (a) = {c ∈ C : ξSRa,c ∈ (0, da(ξ

SR))} the set of categories for

which a is marginal, and by CSR
U (a) = {c ∈ C : ξSRa,c = 0} the set of categories for which a is

unqualified. The next result formalizes the properties of the preceding definitions.

Claim 6. For every category c, |AM(c)| ≤ 1 and, for any two agents a and a′, either a ∈
AQ(c) and a′ ∈ AM(c) ∪ AU(c) or a ∈ AM(c) and a′ ∈ AU(c) implies that aπca

′.

Proof. (|AM(c)| ≤ 1.) Toward a contradiction, suppose that there exist two distinct agents

a, a′ ∈ AM(c) with a 6= a′. By assumption, we have 0 < ξSRa,c < da(ξ
SR) and 0 < ξSRa′,c <

da′(ξ
SR); as ξSR complies with eligibility requirements, it follows that both a and a′ are

eligible for c. If ξSRa < 1, then, as ξSR respects priorities, ξSRa′,c = 0, a contradiction. If

ξSRa = 1, then by definition ξSRa,c < da(ξ
SR) = maxc′∈C{ξSRa,c′}. As ξSR is category neutral, it

follows that ξSRa,c +
∑

ã∈Âa,c
ξã,c = qc so ξa′,c = 0, a contradiction.

(a ∈ AQ(c) and a′ ∈ AM(c) ∪ AU(c) implies that aπca
′.) By assumption, a 6= a′ and

ξSRa,c = da(ξ
SR) > 0. Toward a contradiction, suppose that aπca

′. If a′ is not eligible for c,

then neither is a since a′πa; hence, as ξSR complies with eligibility requirements, ξSRa,c = 0,

a contradiction. For the remainder of the argument, I assume that a′ is eligible for c. If

ξSRa′ < 1, then, as ξSR respects priorities, the assumption that a′πca implies that ξSRa,c = 0, a

contradiction. If ξSRa′ = 1, then by definition dSRa′ = minc′∈C{ξSRa′,c′}; as a′ ∈ AM(c) ∪ AU(c),

ξSRa′,c < dSRa′ so it follows that ξSRa′,c < minc′∈C{ξSRa′,c′}. As ξSR is category neutral, we have

ξSRa′,c +
∑

ã∈Âa′,c
ξã,c = qc so ξSRa,c = 0, a contradiction.

(a ∈ AM(c) and a′ ∈ AU(c) implies that aπca
′.) The reasoning is almost analogous to

that of the preceding argument. By assumption, we have a 6= a′ and ξSRa,c > 0. Toward a

contradiction, suppose that aπca
′. If a′ is not eligible for c, neither is a so ξSRa,c = 0. Otherwise,

if ξSRa′ < 1, we have ξSRa,c = 0 since ξSR respects priorities and if ξSRa′ < 1, we have ξSRa,c = 0

since ξSR is category neutral. Therefore, in all cases, ξSRa,c = 0, a contradiction.

Next, I construct an alternative rationing problem R = (A,C, (πc))c ∈ C, (qc)c∈C) that is

identical to the original rationing problem R except that every agent a who is unqualified for
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a category c at the SR allocation is not eligible for c in R (whether or not a is eligible for c

in R). That is, for every category c, πc is constructed as follows: for any two agents a and a′,

aπca
′ if and only if aπca

′ and for every agent a, aπc∅ if and only if ξSRa,c > 0. In the original

rationing problem R, the SR algorithm produces the allocation ξSR and the SRLP algorithm

terminates after N rounds and produces the allocation xN . In the alternative rationing

problem R, I denote by xSRa,c the allocation produced by the SR algorithm, by N the number

of rounds after which the SRLP algorithm ends, and by xN the allocation produced by the

SRLP algorithm. To prove that ξSR = xN , I show successively that ξSR = ξ
SR

, ξ
SR

= xN ,

and xN = xN .

(ξSR = ξ
SR

) For the original rationing problem R, I denote by xi, ξi, and di the preallo-

cation, the allocation, and the demand vector calculated by the SR algorithm in any given

Round i. Similarly, for the alternative rationing problem R, I denote by xi, ξ
j
, and d

i
the

preallocation, the allocation, and the demand vector calculated by the SR algorithm in any

given Round i. I also denote by d0 and d
0

the initial demand vectors in R and R, respectively.

By definition, we have d0 = d
0

= 1. Consider any Round i ≥ 1 of the SR algorithm

and suppose, toward an inductive argument, that di−1 = d
i−1

. I show that xi = xi and

di = d
i
. Arbitrarily fix an agent a and a category c. I first show that xia,c = xia,c, considering

separately the cases in which ξSRa,c > 0 and ξSRa,c = 0.

Case 1 : ξSRa,c > 0. As ξSR complies with eligibility requirements, the case assumption

implies that a is eligible for c in the rationing problem R. By definition, the case assumption

also implies that a is eligible for c in the alternative rationing problem R. Again by definition,

it follows that xia,c = min{di−1a ,max{qc −
∑

a′∈Âa,c
di−1a′ , 0}} and xia,c = min{di−1a ,max{qc −∑

a′∈Âa,c
d
i−1
a′ , 0}} so the induction hypothesis that di−1 = d

i−1
implies that xia,c = xia,c. (Note

that, by definition, the priority among agents is the same in both rationing problems so Âa,c

can be used to calculate both xia,c and xia,c.)

Case 2 : ξSRa,c = 0. By definition, the case assumption implies that a is not eligible for c

in the original rationing problem R; hence, xia,c = 0 and it remains to show that xia,c = 0.

If a is not eligible either in the alternative rationing problem R, it follows by definition that

xia,c = 0; therefore, for the remainder of the argument, I assume that a is eligible for c in R.

If ξSRa < 1, as a is eligible for c and ξSR is nonwasteful, we have
∑

a′∈A ξ
SR
a,c = qc. Moreover,

as ξSR respects priorities, ξSRa′,c = 0 for every a′ ∈ Ǎa,c and, by the case assumption, ξSRa,c = 0.

It follows that
∑

a′∈Âa,c
ξSRa′,c = qc. If ξSRa = 1, then ξSRa,c +

∑
a′∈Âa,c

ξSRa′,c = qc as ξSR is

category neutral so the case assumption implies that
∑

a′∈Âa,c
ξSRa′,c = qc. Therefore, it has

been established that ∑
a′∈Âa,c

ξSRa′,c = qc. (39)
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Consider any agent a′ ∈ Âa,c. By Lemma A.5, for every Round j ≥ 1 of the SR algorithm,

we have dja′ ≥ maxc′∈C{ξa,c′}, which implies that dja′ ≥ ξja′,c. By Lemma A.4, it follows that,

for every j ≥ 1, dja′ ≥ limj→∞ ξ
j
a′,c. Therefore, by Corollary 1, we have dja′ ≥ ξSRa′,c for every

j ≥ 1, which implies that di−1a′ ≥ ξSRa′,c. As the last inequality holds for every a′ ∈ Âa,c,

(39) implies that
∑

a′∈Âa,c
di−1a′ ≥ qc. As a is eligible for c, it can then be concluded that

xia,c = min{di−1a ,max{qc −
∑

a′∈Âa,c
di−1a′ , 0}} = 0.

As a and c were chosen arbitrarily, it has been established that xia,c = xia,c for every

agent a and every category c; hence we have xi = xi. Then, by construction, it follows that

di = d
i
. By induction, it can then be concluded that xi = xi for every i ≥ 1. Therefore, by

Corollary 1, we have ξSR = limi→∞ x
i = limi→∞ x

i = ξ
SR

.

(ξ
SR

= xN) As each of ξ
SR

and xN is an allocation of the alternative rationing problem

R that satisfies Axioms 1-4, it is sufficient to show that ξ
SR

is the unique allocation of R

that satisfies Axioms 1-4. Let ξ
∗

be an allocation of R that satisfies Axioms 1-4. I show that

ξ
∗

= ξ
SR

.

First, by Theorem 3, ξ
∗

and ξ
SR

generate the same aggregate allocation; moreover, by

Theorem 4, the demand vector associated with ξ
∗

is weakly smaller than the one associated

with ξSR. It follows that

da(ξ
∗
) ≤ da(ξ

SR
) and ξ

∗
a = ξ

SR

a for every a ∈ A. (40)

Consider any agent-object pair (a, c) such that a is not qualified for c at ξ
SR

, i.e., ξ
SR

a,c = 0.

As ξ
SR

= ξSR, a is not qualified for c at ξSR; hence, by definition, a is not eligible for c in

the alternative rationing problem R. As ξ
∗

complies with eligibility requirements, it follows

that ξ∗a,c = 0 so we have

ξ
∗
a,c = 0 for every (a, c) ∈ A× C such that ξ

SR

a,c = 0. (41)

Consider next any agent-object pair (a, c) such that a is qualified for c at ξ
SR

, i.e., ξ
SR

a,c =

da(ξ
SR

). By definition, ξ
∗
a,c ≤ da(ξ

∗
) and, by (40), da(ξ

∗
) ≤ da(ξ

SR
); therefore, we have

ξ
∗
a,c ≤ da(ξ

∗
) ≤ da(ξ

SR
) = ξ

SR

a,c . (42)

Consider any agent a′ ∈ Âa,c and suppose, toward a contradiction, that ξ
SR

a′,c < da′(ξ
SR). If

ξ
SR

a′ < 1, then the fact that ξ
SR

a,c = da(ξ
SR

) > 0 implies that ξ
SR

does not respect priorities,

a contradiction. If ξ
SR

a′ = 1, then by definition da′(ξ
SR

) = maxc′∈C{ξSRa,c′} so we have ξ
SR

a′,c <

maxc∈C{ξ
SR

a′,c′}. As ξ
SR

is category neutral, it must then be that ξ
SR

a′,c +
∑

ã∈Âa′,c
ξ
SR

ã,c = qc.

However, as ξ
SR

a,c = da(ξ
SR

) > 0, we have ξ
SR

a,c +
∑

ã∈Âa,c
ξ
SR

ã,c > qc, a contradiction. It can
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then be concluded that ξ
SR

a′,c = da′(ξ
SR); hence (42) applies to a′ and we have ξ

∗
a′,c ≤ ξ

SR

a′,c for

all a′ ∈ Âa,c. It follows that

ξ
∗
a,c +

∑
a′∈Âa,c

ξ
∗
a′,c ≤ ξ

SR

a,c +
∑

a′∈Âa,c

ξ
SR

a′,c. (43)

Suppose toward a contradiction that ξ
∗
a,c < da(ξ

∗
). By (40), we have ξ

∗
a,c < ξ

SR

a,c so (43)

holds with a strict inequality, which implies that ξ
∗
a,c +

∑
a′∈Âa,c

ξ
∗
a′,c < qc. If ξ

∗
a < 1, then ξ

∗

either is wasteful or does not respect priorities while if ξ
∗
a = 1, then da(ξ

∗
) = maxc′∈C{ξ

∗
a,c′} so

ξ
∗
a,c < maxc′∈C{ξ

∗
a,c′} and ξ

∗
is not category neutral. As ξ

∗
satisfies Axioms 1-4 by assumption,

both cases yield a contradiction. It follows that ξ
∗
a,c = da(ξ

∗
). Then, if da(ξ

∗
) = 1, ξ

∗
a,c = 1

so ξ
∗
a = 1 and if da(ξ

∗
) < 1, ξ

∗
a = 1 by definition. As a and c were chosen arbitrarily, it can

then be concluded that

ξ
∗
a,c = da(ξ

∗
) and ξ

∗
a = 1 for every (a, c) ∈ A× C such that ξ

SR

a,c = da(ξ
SR

). (44)

Let ASRQ = ∪c∈C{ASRQ (c)} be the set of agents who are qualified for at least one category at

ξ
SR

. For every agent a ∈ ASRQ , (44) implies that ξ
∗
a = 1 so

∑
a∈CSR

Q (a) ξ
∗
a,c +

∑
a∈CSR

M (a) ξ
∗
a,c +∑

a∈CSR
U (a) ξ

∗
a,c = 1. By (41) and (44), it follows that |CSR

Q (a)|da(ξ
∗
) +

∑
a∈CSR

M (a) ξ
∗
a,c = 1;

hence we have

da(ξ
∗
) =

1−
∑

c∈CSR
M (a) ξ

∗
a,c

|CSR
Q (a)|

for every a ∈ ASRQ . (45)

Next, let CSR
M = ∪a∈ACSR

M (a) be the set of categories that have a marginal agent and,

for every c ∈ CSR
M , let a(c) be the agent who is marginal for c (by Claim 6, a(c) is unique).

Consider any category c ∈ CSR
M . By definition, ξ

SR

a,c = 0 for every a ∈ ASRU (c) so
∑

a∈A ξ
SR

a,c =

ξ
SR

a(c),c +
∑

a′∈ASR
Q (c) ξ

SR

a′,c. As Claim 6 implies that ASRQ (c) = Âa(c),c, we have
∑

a∈A ξ
SR

a,c =

ξ
SR

a(c),c +
∑

a′∈Âa(c),c
ξ
SR

a′,c. If ξ
SR

a(c) < 1, then, as ξ
SR

is nonwasteful and respects priorities,

it must be that ξ
SR

a(c),c +
∑

a′∈Âa(c),c
ξ
SR

a′,c = qc. If ξ
SR

a(c) = 1, then by definition da(ξ
SR

) =

maxc′∈C{ξ
SR

a(c),c′} so ξ
SR

a(c),c < maxc′∈C{ξ
SR

a(c),c′}. As ξ
SR

ris category neutral, it must then be

that ξ
SR

a(c),c +
∑

a′∈Âa(c),c
ξ
SR

a′,c = qc. The preceding argument has established that

∑
a∈A

ξ
SR

a,c = qc for every c ∈ CSR
M . (46)

As ξ
∗

is an allocation, it must be that
∑

a∈A ξ
∗
a,c ≤ qc, and therefore (46) implies that∑

a∈A ξ
∗
a,c ≤

∑
a∈A ξ

SR

a,c .

Consider next a category c ∈ C \ CSR
M . For every a ∈ ASRU (c), ξ

SR

a,c = 0 by definition and
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ξ
∗
a,c = 0 by (41). As ASRM (c) = ∅ by assumption, it follows that

∑
a∈A ξ

SR

a,c =
∑

a∈ASR
Q (c) ξ

SR

a,c

and
∑

a∈A ξ
∗
a,c =

∑
a∈ASR

Q (c) ξ
∗
a,c. For every a ∈ ASRQ (c), ξ

SR

a,c = da(ξ
SR

) by definition and

ξ
∗
a,c = da(ξ

∗
) by (44), which implies that

∑
a∈A ξ

SR

a,c = |ASRQ (c)|da(ξ
SR

) and
∑

a∈A ξ
∗
a,c =

|ASRQ (c)|da(ξ
∗
). As da(ξ

∗
) ≤ da(ξ

SR
), it must then be that

∑
a∈A ξ

∗
a,c ≤

∑
a∈A ξ

SR

a,c . The

argument in the last two paragraphs allows concluding that∑
a∈A

ξ
∗
a,c ≤

∑
a∈A

ξ
SR

a,c for every c ∈ C. (47)

By (40), |ξ∗| =
∑

a∈A ξ
∗
a =

∑
a∈A ξ

SR

a = |ξSR|.; hence, by definition, we have
∑

c∈C
∑

a∈A ξ
∗
a,c =∑

c∈C
∑

a∈A ξ
SR

a,c , which combined with (47) implies that∑
a∈A

ξ
∗
a,c =

∑
a∈A

ξ
SR

a,c for every c ∈ C. (48)

For every category c ∈ CSR
M , combining (46) and (48) yields

∑
a∈A ξ

∗
a,c = qc. As ξ

∗
a,c = 0 for

every a ∈ ASRU (c) by (41) and ξ
∗
a,c = da(ξ

∗
) for every a ∈ ASRQ (c) by (44), it must be that

ξ
∗
a(c),c +

∑
a′∈ASR

Q (c)

da′(ξ
∗
) = qc for every c ∈ CSR

M . (49)

Combining (45) and (49), it follows that any allocation ξ
∗

that satisfies Axioms 1-4 must

satisfy the following linear system of equations:

ξ
∗
a(c),c +

∑
a′∈ASR

Q (c)

1−
∑

c∈CSR
M (a′) ξ

∗
a′,c

|CSR
Q (a′)|

= qc for every c ∈ CSR
M . (50)

The linear system of equations defined in (50) has |CSR
M | variables and |CSR

M | equations.

For any ξ
∗

that satisfies Axioms 1-4, (ξ
∗
a(c),c)c∈CSR

M
must be a solution to the linear system of

equations defined in (50); moreover, for every agent-category pair (a, c) such that a ∈ ASRQ (c),

ξ
∗
a,c must be determined by (44) and (45), and for every agent-category pair (a, c) such that

a ∈ ASRU (c), it must be that ξ
∗
a,c = 0, as per (41). As ξ

SR
satisfies Axioms 1-4, (ξ

SR

a(c),c)c∈CSR
M

is

a solution to the linear system of equations defined in (50). If all |CSR
M | equations in (50) are

linearly independent, then (ξ
SR

a(c),c)c∈CSR
M

is the unique solution so ξ
SR

is the unique allocation

in the alternative allocation problem R to satisfy Axioms 1-4; hence the proof is complete.

In the remainder of the proof, I show that the opposite case leads to a contradiction.

Toward a contradiction, suppose that the linear system of equations defined in (50) has

strictly fewer than |CSR
M | linearly independent equations. Then, there is at least one degree
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of freedom; hence, arbitrarily fixing a category c ∈ CSR
M , for any value of ξ

∗
(a(c),c) there

exists a vector (ξ
∗
a(c′),c′)c′∈CSR

M \{c} such that (ξ
∗
a(c′),c′)c′∈CSR

M
is a solution to the linear system

of equations defined in (50).

Given an arbitrarily small positive number ε > 0, I construct an allocation ξ
ε

as follows.

Let ξ
ε

a(c),c = ξ
SR

a(c),c+ ε and, for every c′ ∈ CSR
M \{c}, let ξ

ε

a(c′),c′ be such that (ξ
ε

a(c′),c′)c′∈CSR
M

is a

solution to the system of equations defined in (50). Then, for every agent-category pair (a, c)

such that a ∈ ASRQ (c), let ξ
ε

a,c be determined by (44) and (45) and, for every agent-category

pair (a, c) such that a ∈ ASRU (c), let ξ
ε

a,c = 0 (as per (41)). By definition, for every c′ ∈ CSR
M ,

0 < ξ
SR

a(c′),c′ < da(c′)(ξ
SR

). As all equations in (44) and (50) are linear, there exists a value

ε > 0 small enough so that 0 < ξ
ε

a(c′),c′ < da(c′)(ξ
ε
) for every c′ ∈ CSR

M . Fixing such an ε, I

next show that ξ
ε

satisfies Axioms 1-4.

By definition, ξ
ε

a,c = 0 for every agent-category pair (a, c) such that a is not eligible for c

in the alternative problem R so ξ
ε

complies with eligibility requirements. I next introduce a

small result that is useful to prove that ξ
ε

satisfies the other three axioms. For every agent-

object pair (a, c) such that a ∈ ASRQ (c), by the definition ξ
ε

satisfies the first part of (44):

ξ
ε

a,c = da(ξ
ε
). I show that the second part of (44) also holds. If d

(
aξ
ε
) = 1, then ξ

ε

a,c = 1 so

ξ
ε

a = 1. If d
(
aξ
ε
) < 1, then by definition ξ

ε

a = 1. Therefore, we have

ξ
ε

a = 1 for every (a, c) ∈ A× C such that ξ
SR

a,c = da(ξ
SR

). (51)

Suppose toward a contradiction that ξ
ε

is wasteful. Then, there exists an agent-category pair

(a, c) such that
∑

a′∈A ξ
ε

a′,c < qc, ξ
ε

a < 1, and a is eligible for c in R. By (50) the fact that∑
a′∈A ξ

ε

a′,c < qc implies that c /∈ CSR
M so ASRM (a) = ∅; hence it must be that either a ∈ ASRQ (c)

or a ∈ ASRU (c). If a ∈ ASRQ (c), then by (51), ξ
ε

a = 1, a contradiction. If a ∈ ASRU (c), then

by definition a is not eligible for c in R, a contradiction. It can then be concluded that

ξ
ε

is nonwasteful. Next, suppose toward a contradiction that ξ
ε

does not respect priorities.

Then, there exists an agent-category pair (a, c) and a lower-priority agent a′ ∈ Ǎa,c such

that ξ
ε

a < 1 and ξ
ε

a′,c > 0. If a ∈ ASRQ (c), then (51) implies that ξ
ε

a = 1, a contradiction. If

a /∈ ASRQ (c), then by Claim 6, a′ ∈ ASRU (c) so, by (41), ξ
ε

a′,c = 0, a contradiction. It follows

that ξ
ε

respects priorities. Finally, suppose toward a contradiction that ξ
ε

is not category

neutral. Then, there exists an agent-category pair (a, c) such that a is eligible for c in R,

ξ
ε

a,c < maxc′∈C{ξ
ε

a,c′}, and ξ
ε

a,c +
∑

a′∈Âa,c
ξ
ε

a′,c < qc. By definition, maxc′∈C{ξ
ε

a,c′} ≤ da(ξ
ε
),

which by (44) implies that a /∈ ASRQ (c). Moreover, the assumption that a is eligible for c in R

implies by definition that a /∈ ASRU (c) so it must be that a ∈ ASRM (c). In that case, however,

we have ξ
ε

a,c +
∑

a′∈ASR
Q (c) ξ

ε

a′,c = qc by (50) and that ASRQ (c) = Âa,c by Claim 6. It follows

that ξ
ε

a,c +
∑

a′∈Âa,c
ξ
ε

a′,c = qc, a contradiction.
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The preceding argument has established that there exists an allocation ξ
ε

in the alternative

rationing problem R that satisfies Axioms 1-4. By definition, there exists a category c ∈ CSR
M

such that ξ
ε

a(c),c = ξ
SR

a(c),c + ε > ξ
SR

a(c),c. Moreover, by construction, both ξ
ε

and ξ
SR

satisfy (49)

so we have

ξ
ε

a(c),c +
∑

a′∈ASR
Q (c)

da′(ξ
ε
) = ξ

SR

a(c),c +
∑

a′∈ASR
Q (c)

da′(ξ
SR

) = qc.

Then, as ξ
ε

a(c),c > ξ
SR

a(c),c, there must exist an agent a′ ∈ ASRQ (c) such that da′(ξ
ε
) < da′(ξ

SR
),

which contradicts (40).

(xN = xN) Though not entirely analogous, the reasoning is this last part of the proof

is similar to that of the first part (which shows that ξSR = ξ
SR

). The main difference is

that I follow the SRLP algorithm instead of the SR algorithm. For the original rationing

problem R, I denote by xi, δi, and di the preallocation, the LP demand vector, and the

demand vector calculated by the SRLP algorithm in any given Round i. Similarly, for the

alternative rationing problem R, I denote by xi, δ
i
, and d

i
the preallocation, the LP demand

vector, and the demand vector calculated by the SRLP algorithm in any given Round i. I

also denote by d0 and d
0

the initial demand vectors in R and R, respectively.

By definition, we have d0 = d
0

= δ1 = δ
1

= 1. Consider any Round i = 1, . . . ,min{N,N}
of the SRLP algorithm and suppose, toward an inductive argument, that δi = δ

i
. I show

that xi = xi and, if i < min{N,N}, δi+1 = δ
i+1

. Arbitrarily fix an agent a and a category c.

I first show that xia,c = xia,c, considering separately the cases in which ξSRa,c > 0 and ξSRa,c = 0.

Case 1 : ξSRa,c > 0. As ξSR complies with eligibility requirements, the case assump-

tion implies that a is eligible for c in the rationing problem R. By definition, the case

assumption also implies that a is eligible for c in the alternative rationing problem R.

Again by definition, it follows that xia,c = min{δia,max{qc −
∑

a′∈Âa,c
δia′ , 0}} and xia,c =

min{δia,max{qc −
∑

a′∈Âa,c
δ
i

a′ , 0}} so the induction hypothesis that δi = δ
i

implies that

xia,c = xia,c.

Case 2 : ξSRa,c = 0. By definition, the case assumption implies that a is not eligible for c

in the alternative rationing problem R; hence, xia,c = 0 and it remains to show that xia,c = 0.

If a is not eligible either in the alternative rationing problem R, it follows by definition that

xia,c = 0; therefore, for the remainder of the argument, I assume that a is eligible for c in R.

As xN = ξ
SR

= ξSR, (39) implies that∑
a′∈Âa,c

xNa′,c = qc. (52)

Consider any agent a′ ∈ Âa,c. By construction, xN is an allocation (otherwise the SRLP
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algorithm would not end in Round N) so by definition da′(x
N) = maxc′∈C{xNa′,c′} if xNa = 1

and d(xN) = 1 if xNa < 1. It follows that d
N

a′ = da′(x
N) ≥ maxc′∈C{xNa′,c′} ≥ xNa′,c. As

a′ was chosen arbitrarily, we have d
N

a′ ≥ xNa′,c for every a′ ∈ Âa,c; hence (52) implies that∑
a′∈Âa,c

d
N

a′ ≥ qc. Then, by Lemma C.3, we have
∑

a′∈Âa,c
δ
i

a′ ≥ qc. As a is eligible for c, it

follows by definition that xia,c = min{δia,max{qc −
∑

a′∈Âa,c
δ
i

a′ , 0}} = 0.

As a and c were chosen arbitrarily, it has been established that xia,c = xia,c for every

agent a and every category c; hence we have xi = xi. Then, by construction, it follows that

di = d
i
. Moreover, if i < min{N,N}, then by construction the fact that xi = xi and di = d

i

implies that δi+1 = δ
i+1

. By induction, it follows that xmin{N,N} = xmin{N,N} so it must be

that, in both rationing problems, the SRLP algorithm ends in the same Round N = N and

produces the same allocation xN = xN .
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